Department of Radiation Oncology, 12284University of Nebraska Medical Center, Omaha, NE, USA.
College of Medicine, 12284University of Nebraska Medical Center, Omaha, NE, USA.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221126869. doi: 10.1177/15330338221126869.
Radiomics is a rapidly growing field that quantitatively extracts image features in a high-throughput manner from medical imaging. In this study, we analyzed the radiomics features of the whole pancreas between healthy individuals and pancreatic cancer patients, and we established a predictive model that can distinguish cancer patients from healthy individuals based on these radiomics features. We retrospectively collected venous-phase scans of contrast-enhanced computed tomography (CT) images from 181 control subjects and 85 cancer case subjects for radiomics analysis and predictive modeling. An attending radiation oncologist delineated the pancreas for all the subjects in the Varian Eclipse system, and we extracted 924 radiomics features using PyRadiomics. We established a feature selection pipeline to exclude redundant or unstable features. We randomly selected 189 cases (60 cancer and 129 control) as the training set. The remaining 77 subjects (25 cancer and 52 control) as a test set. We trained a Random Forest model utilizing the stable features to distinguish the cancer patients from the healthy individuals on the training dataset. We analyzed the performance of our best model by running 5-fold cross-validations on the training dataset and applied our best model to the test set. We identified that 91 radiomics features are stable against various uncertainty sources, including bin width, resampling, image transformation, image noise, and segmentation uncertainty. Eight of the 91 features are nonredundant. Our final predictive model, using these 8 features, has achieved a mean area under the receiver operating characteristic curve (AUC) of 0.99 ± 0.01 on the training dataset (189 subjects) by cross-validation. The model achieved an AUC of 0.910 on the independent test set (77 subjects) and an accuracy of 0.935. CT-based radiomics analysis based on the whole pancreas can distinguish cancer patients from healthy individuals, and it could potentially become an early detection tool for pancreatic cancer.
放射组学是一个快速发展的领域,它可以从医学影像中高通量地提取图像特征。在这项研究中,我们分析了健康个体和胰腺癌患者的整个胰腺的放射组学特征,并建立了一个基于这些放射组学特征可以区分癌症患者和健康个体的预测模型。我们回顾性地收集了 181 名对照受试者和 85 名癌症病例受试者的静脉期增强 CT 图像扫描进行放射组学分析和预测建模。一位主治放射肿瘤学家在 Varian Eclipse 系统中为所有受试者勾画胰腺,我们使用 PyRadiomics 提取了 924 个放射组学特征。我们建立了一个特征选择管道来排除冗余或不稳定的特征。我们随机选择了 189 例(60 例癌症和 129 例对照)作为训练集。其余 77 例(25 例癌症和 52 例对照)作为测试集。我们利用稳定的特征在训练数据集上训练随机森林模型,以区分癌症患者和健康个体。我们通过在训练数据集上进行 5 折交叉验证来分析我们的最佳模型的性能,并将我们的最佳模型应用于测试集。我们确定了 91 个放射组学特征是稳定的,可以抵抗各种不确定性来源,包括 bin width、重采样、图像变换、图像噪声和分割不确定性。这 91 个特征中有 8 个是不可重复的。我们使用这 8 个特征的最终预测模型在训练数据集(189 名受试者)上通过交叉验证实现了平均接收者操作特征曲线(AUC)为 0.99±0.01,在独立测试集(77 名受试者)上的 AUC 为 0.910,准确率为 0.935。基于整个胰腺的 CT 放射组学分析可以区分癌症患者和健康个体,它可能成为胰腺癌的早期检测工具。