Suppr超能文献

评估机器学习模型早期检测胰腺导管腺癌 (PDA) 的稳健性:使用图像干扰方法评估对图像获取和放射组学工作流程变化的弹性。

Assessing the robustness of a machine-learning model for early detection of pancreatic adenocarcinoma (PDA): evaluating resilience to variations in image acquisition and radiomics workflow using image perturbation methods.

机构信息

Divisions of Abdominal and Nuclear Imaging, Nuclear Radiology Fellowship, Nuclear Radiology Research Operations, Enterprise PET/MR Research and Development, Department of Radiology, Mayo Clinic, 200 First St SW, Charlton 1, Rochester, MN, 55905, USA.

出版信息

Abdom Radiol (NY). 2024 Mar;49(3):964-974. doi: 10.1007/s00261-023-04127-1. Epub 2024 Jan 4.

Abstract

PURPOSE

To evaluate robustness of a radiomics-based support vector machine (SVM) model for detection of visually occult PDA on pre-diagnostic CTs by simulating common variations in image acquisition and radiomics workflow using image perturbation methods.

METHODS

Eighteen algorithmically generated-perturbations, which simulated variations in image noise levels (σ, 2σ, 3σ, 5σ), image rotation [both CT image and the corresponding pancreas segmentation mask by 45° and 90° in axial plane], voxel resampling (isotropic and anisotropic), gray-level discretization [bin width (BW) 32 and 64)], and pancreas segmentation (sequential erosions by 3, 4, 6, and 8 pixels and dilations by 3, 4, and 6 pixels from the boundary), were introduced to the original (unperturbed) test subset (n = 128; 45 pre-diagnostic CTs, 83 control CTs with normal pancreas). Radiomic features were extracted from pancreas masks of these additional test subsets, and the model's performance was compared vis-a-vis the unperturbed test subset.

RESULTS

The model correctly classified 43 out of 45 pre-diagnostic CTs and 75 out of 83 control CTs in the unperturbed test subset, achieving 92.2% accuracy and 0.98 AUC. Model's performance was unaffected by a three-fold increase in noise level except for sensitivity declining to 80% at 3σ (p = 0.02). Performance remained comparable vis-a-vis the unperturbed test subset despite variations in image rotation (p = 0.99), voxel resampling (p = 0.25-0.31), change in gray-level BW to 32 (p = 0.31-0.99), and erosions/dilations up to 4 pixels from the pancreas boundary (p = 0.12-0.34).

CONCLUSION

The model's high performance for detection of visually occult PDA was robust within a broad range of clinically relevant variations in image acquisition and radiomics workflow.

摘要

目的

通过使用图像扰动方法模拟图像获取和放射组学工作流程中的常见变化,评估基于放射组学的支持向量机(SVM)模型在预诊断 CT 上检测隐匿性胰腺导管腺癌(PDA)的稳健性。

方法

引入了 18 种算法生成的扰动,模拟图像噪声水平(σ、2σ、3σ、5σ)、图像旋转[CT 图像和相应的胰腺分割掩模在轴向平面上旋转 45°和 90°]、体素重采样(各向同性和各向异性)、灰度离散化[灰度级宽度(BW)为 32 和 64]和胰腺分割(从边界开始连续侵蚀 3、4、6 和 8 个像素,膨胀 3、4 和 6 个像素),将这些扰动引入原始(未扰动)测试子集(n=128;45 例预诊断 CT,83 例胰腺正常的对照 CT)。从这些额外的测试子集中的胰腺掩模中提取放射组学特征,并比较模型在未扰动测试子集中的性能。

结果

在未扰动的测试子集中,模型正确分类了 45 例预诊断 CT 中的 43 例和 83 例对照 CT 中的 75 例,准确率为 92.2%,AUC 为 0.98。除了在 3σ 时敏感性下降至 80%(p=0.02)外,噪声水平增加三倍对模型性能没有影响。尽管图像旋转(p=0.99)、体素重采样(p=0.25-0.31)、灰度级 BW 变化至 32(p=0.31-0.99)以及胰腺边界上的侵蚀/膨胀至 4 个像素(p=0.12-0.34)发生变化,模型在未扰动测试子集中的性能仍保持一致。

结论

该模型在广泛的临床相关图像获取和放射组学工作流程变化范围内,对于隐匿性 PDA 的检测具有出色的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验