文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MnCO3 矿化聚多巴胺纳米粒子的新型诊疗一体化试剂用于癌症的多模态成像引导光热治疗

MnCO-mineralized polydopamine nanoparticles as an activatable theranostic agent for dual-modality imaging-guided photothermal therapy of cancers.

机构信息

Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.

Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

出版信息

Theranostics. 2022 Sep 21;12(15):6762-6778. doi: 10.7150/thno.77060. eCollection 2022.


DOI:10.7150/thno.77060
PMID:36185599
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9516237/
Abstract

Single imaging modality is still insufficient to evaluate the biological and anatomical structures of tumors with high accuracy and reliability. Generation of non-specific contrast, leading to a low target-to-background signal ratio, results in low imaging resolution and accuracy. Tumor environment-specific activatable multifunctional contrast agents need to maximize the contrast signals, representing a dual imaging-guided photothermal therapy (PTT) at target tumor sites. Cellular uptake, cytotoxicity assay, and photothermal conversion efficiency of MnCO-mineralized fluorescent polydopamine nanoparticles (MnCO-FPNPs) were evaluated using 4T1 breast cancer cells. dual-modality imaging was performed using IVIS imaging and a 4.7 T animal MRI systems after injection into 4T1 tumor-bearing nude mice. The effects of photothermal therapeutic through PTT were measured after irradiation with an 808 nm laser (1.5 W/cm) for 10 min, measuring the size of the tumors every 2 days. At physiological pH (7.4), MnCO-FPNP is efficiently quenched. Conversely, at acidic pH (5.4), the strong fluorescence (FL) is recovered due to the dissociation of Mn from the FPNPs. At pH 7.4, MnCO-FPNP activity is silenced to enhance water proton relaxation due to unionized MnCO maintenance; conversely, at acidic pH (5.4), MnCO-FPNPs efficiently release Mn ions, thereby resulting in -weighted magnetic resonance (MR) contrast enhancement. MnCO-FPNPs display a promising diagnostic ability for 4T1 breast cancer xenograft models, as well as exhibit a high photothermal conversion efficiency. A successful tumor treatment via their photothermal activity is accomplished within 14 days. Our studies exhibited unique "OFF-ON" activation abilities in FL/MR dual imaging and PTT functions. This approach suggests that the MnCO-FPNPs may serve as a useful platform for various mineralization-based multimodal imaging-guided PTT models for many cancer theranostic applications.

摘要

单一的成像模式仍然不足以高精度和高可靠性地评估肿瘤的生物和解剖结构。产生非特异性对比,导致靶标与背景信号的比值低,导致成像分辨率和准确性低。需要肿瘤环境特异性的可激活多功能对比剂来最大限度地提高对比信号,在靶肿瘤部位代表双重成像引导的光热治疗(PTT)。使用 4T1 乳腺癌细胞评估了 MnCO 矿化荧光聚多巴胺纳米粒子(MnCO-FPNP)的细胞摄取、细胞毒性测定和光热转换效率。将 MnCO-FPNP 注入 4T1 荷瘤裸鼠后,使用 IVIS 成像和 4.7 T 动物 MRI 系统进行了双模式成像。在使用 808nm 激光(1.5W/cm)照射 10 分钟后,通过测量肿瘤的大小来测量光热治疗的效果,每 2 天测量一次。在生理 pH 值(7.4)下,MnCO-FPNP 被有效地猝灭。相反,在酸性 pH 值(5.4)下,由于 Mn 从 FPNP 中解离,强荧光(FL)得到恢复。在 pH 值为 7.4 时,MnCO-FPNP 的活性被沉默,以增强由于未离解的 MnCO 维持而导致的水质子弛豫;相反,在酸性 pH 值(5.4)下,MnCO-FPNP 有效地释放 Mn 离子,从而导致 T1 加权磁共振(MR)对比增强。MnCO-FPNP 对 4T1 乳腺癌异种移植模型具有有前途的诊断能力,并表现出高的光热转换效率。通过它们的光热活性成功地在 14 天内完成了肿瘤治疗。我们的研究在 FL/MR 双成像和 PTT 功能方面表现出独特的“开启-关闭”激活能力。这种方法表明,MnCO-FPNP 可能作为一种有用的平台,用于多种基于矿化的多模态成像引导的 PTT 模型,用于许多癌症治疗应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/9355b691e741/thnov12p6762g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/ceee9085afb4/thnov12p6762g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/830403436838/thnov12p6762g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/051b1b6bd880/thnov12p6762g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/0834e91c1d01/thnov12p6762g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/eaf2673c1bff/thnov12p6762g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/3467f9189644/thnov12p6762g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/9355b691e741/thnov12p6762g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/ceee9085afb4/thnov12p6762g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/830403436838/thnov12p6762g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/051b1b6bd880/thnov12p6762g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/0834e91c1d01/thnov12p6762g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/eaf2673c1bff/thnov12p6762g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/3467f9189644/thnov12p6762g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125d/9516237/9355b691e741/thnov12p6762g007.jpg

相似文献

[1]
MnCO-mineralized polydopamine nanoparticles as an activatable theranostic agent for dual-modality imaging-guided photothermal therapy of cancers.

Theranostics. 2022

[2]
Polydopamine-Coated Manganese Carbonate Nanoparticles for Amplified Magnetic Resonance Imaging-Guided Photothermal Therapy.

ACS Appl Mater Interfaces. 2017-5-23

[3]
Holmium (III)-doped multifunctional nanotheranostic agent for ultra-high-field magnetic resonance imaging-guided chemo-photothermal tumor therapy.

Acta Biomater. 2023-12

[4]
Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.

J Control Release. 2017-5-10

[5]
Magnetic Semiconductor Gd-Doping CuS Nanoparticles as Activatable Nanoprobes for Bimodal Imaging and Targeted Photothermal Therapy of Gastric Tumors.

Nano Lett. 2019-1-30

[6]
Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor.

Acta Biomater. 2017-1-1

[7]
cRGD-Conjugated FeO@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy.

Int J Nanomedicine. 2019-12-5

[8]
Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells.

ACS Appl Mater Interfaces. 2015-8-12

[9]
Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy.

J Adv Res. 2022-11

[10]
A "Dual-Source, Dual-Activation" Strategy for an NIR-II Window Theranostic Nanosystem Enabling Optimal Photothermal-Ion Combination Therapy.

Small. 2022-7

引用本文的文献

[1]
Photothermal Release by Melanin-like Nanoparticles: Biomedical Applications.

J Funct Biomater. 2025-7-2

[2]
Multifunctional Hydrogels for Advanced Cancer Treatment: Diagnostic Imaging and Therapeutic Modalities.

Gels. 2025-6-1

[3]
Manganese-Based Nanotherapeutics for Targeted Treatment of Breast Cancer.

ACS Appl Bio Mater. 2025-5-19

[4]
Perfluorocarbon-polyepinephrine core-shell nanoparticles as a near-infrared light activatable theranostic platform for bimodal imaging-guided photothermal/chemodynamic synergistic cancer therapy.

Theranostics. 2025-1-1

[5]
Customized Sized Manganese Sulfide Nanospheres as Efficient T MRI Contrast Agents for Enhanced Tumor Theranostics.

Biomater Res. 2024-12-11

[6]
ROS-Responsive Nanoprobes for Bimodal Imaging-Guided Cancer Targeted Combinatorial Therapy.

Int J Nanomedicine. 2024

[7]
Polydopamine nanomaterials and their potential applications in the treatment of autoimmune diseases.

Drug Deliv. 2023-12

[8]
A Photosensitizer-Loaded Polydopamine Nanomedicine Agent for Synergistic Photodynamic and Photothermal Therapy.

Molecules. 2023-8-4

本文引用的文献

[1]
Controllable synthesis of AgNWs@PDA@AgNPs core-shell nanocobs based on a mussel-inspired polydopamine for highly sensitive SERS detection.

RSC Adv. 2018-7-31

[2]
Theranostic system for ratiometric fluorescence monitoring of peptide-guided targeted drug delivery.

RSC Adv. 2019-10-14

[3]
Dual-mode US/MRI nanoparticles delivering siRNA and Pt(iv) for ovarian cancer treatment.

RSC Adv. 2019-10-17

[4]
Construction of LiMnO microcubes and spheres the control of the (104) crystal planes of MnCO for high rate Li-ions batteries.

RSC Adv. 2019-7-4

[5]
Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor-Resident Living Immunotherapeutics.

Angew Chem Int Ed Engl. 2022-7-4

[6]
Copper arsenite-complexed Fenton-like nanoparticles as oxidative stress-amplifying anticancer agents.

J Control Release. 2022-1

[7]
Polydopamine Nanoparticle-Mediated Dopaminergic Immunoregulation in Colitis.

Adv Sci (Weinh). 2022-1

[8]
Spatiotemporally Controllable Distribution of Combination Therapeutics in Solid Tumors by Dually Modified Bacteria.

Adv Mater. 2022-1

[9]
Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes.

Nano Today. 2021-10

[10]
Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment.

J Pers Med. 2021-6-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索