Suppr超能文献

[基因名称1]和[基因名称2]的共过表达提高了玉米种子的营养价值。 (注:原文中两个基因名称未给出具体内容,翻译时用[基因名称1]和[基因名称2]代替)

Co-overexpression of and improves seed nutritional value in maize.

作者信息

Xiang Xiaoli, Hu Binhua, Pu Zhigang, Wang Lanying, Leustek Thomas, Li Changsheng

机构信息

Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China.

The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.

出版信息

Front Plant Sci. 2022 Sep 15;13:969763. doi: 10.3389/fpls.2022.969763. eCollection 2022.

Abstract

Maize seeds synthesize insufficient levels of the essential amino acid methionine (Met) to support animal and livestock growth. () and () are key control points for sulfur assimilation into Cys and Met biosynthesis. Two high-MET maize lines and were obtained through metabolic engineering recently, and their total Met was increased by 1.4- and 1.57-fold, respectively, compared to the wild type. The highest Met maize line, , was created by stacking the two transgenes, causing total Met to increase 2.24-fold. However, the plants displayed progressively severe defects in plant growth, including early senescence, stunting, and dwarfing, indicating that excessive sulfur assimilation has an adverse effect on plant development. To explore the mechanism of correlation between Met biosynthesis in maize leaves and storage proteins in developing endosperm, the transcriptomes of the sixth leaf at stage V9 and 18 DAP endosperm of , , and the null segregants were quantified and analyzed. In , 3274 genes in leaves (1505 up- and 1769 downregulated) and 679 genes in the endosperm (327 up- and 352 downregulated) were differentially expressed. Gene ontology (GO) and KEGG (Kyoto encyclopedia of genes and genomes) analyses revealed that many genes were associated with Met homeostasis, including transcription factors and genes involved in cysteine and Met metabolism, glutathione metabolism, plant hormone signal transduction, and oxidation-reduction. The data from gene network analysis demonstrated that two genes, serine/threonine-protein kinase (CCR3) and heat shock 70 kDa protein (HSP), were localized in the core of the leaves and endosperm regulation networks, respectively. The results of this study provide insights into the diverse mechanisms that underlie the ideal establishment of enhanced Met levels in maize seeds.

摘要

玉米种子合成的必需氨基酸甲硫氨酸(Met)水平不足以支持动物和家畜的生长。()和()是硫同化进入半胱氨酸(Cys)和甲硫氨酸生物合成的关键控制点。最近通过代谢工程获得了两个高Met玉米品系和,与野生型相比,它们的总Met分别增加了1.4倍和1.57倍。通过叠加两个转基因创造了最高Met的玉米品系,使总Met增加了2.24倍。然而,植株在生长过程中表现出逐渐严重的缺陷,包括早衰、发育迟缓、植株矮小,这表明过量的硫同化对植物发育有不利影响。为了探究玉米叶片中甲硫氨酸生物合成与发育中的胚乳贮藏蛋白之间的相关性机制,对、和无效分离株在V9期的第六片叶以及授粉后18天(DAP)的胚乳的转录组进行了定量分析。在中,叶片中有3274个基因(1505个上调和1769个下调)和胚乳中有679个基因(327个上调和352个下调)差异表达。基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析表明,许多基因与Met稳态相关,包括转录因子以及参与半胱氨酸和甲硫氨酸代谢、谷胱甘肽代谢、植物激素信号转导和氧化还原的基因。基因网络分析数据表明,丝氨酸/苏氨酸蛋白激酶(CCR3)和热休克70 kDa蛋白(HSP)这两个基因分别位于叶片和胚乳调控网络的核心。本研究结果为深入了解玉米种子中提高Met水平理想建立的多种机制提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc01/9520583/94e15f67f5b9/fpls-13-969763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验