Hu Haichao, He Beibei, Ma Lei, Chen Xin, Han Peilin, Luo Yingli, Liu Yonghong, Fei Xitong, Wei Anzhi
College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China.
Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China.
Front Plant Sci. 2022 Sep 6;13:968714. doi: 10.3389/fpls.2022.968714. eCollection 2022.
As an important economical plant, is widely cultivated in arid and semi-arid areas. The studies associated with photosynthesis under drought stress were widely carried out, but not yet in . Here, the photosynthesis of two cultivars (FJ, cv. "Fengjiao"; HJ, cv. "Hanjiao") was analyzed under drought stress using physiological indicators and transcriptome data. Drought decreased stomatal aperture and stomatal conductance (Gsw), reduced transpiration rate (E) and sub-stomatal CO concentration (Ci), and lowered chlorophyll and carotenoid content, which reduced the net photosynthetic rate (Pn) of . The higher photosynthetic rate in HJ stemmed from its higher chlorophyll content, larger stomatal aperture and Gsw, and higher Ci. Weighted gene co-expression network analysis (WGCNA) identified several ABA signal transduction genes (, , and ), LCH-encoding genes (), and chlorophyll metabolism genes (, , and ). Additionally, seven transcription factor genes were identified as important factors regulating photosynthesis under drought conditions. In general, a photosynthetic response model under drought stress was built firstly in , and the key genes involved in photosynthesis under drought stress were identified. Therefore, the results in our research provide important information for photosynthesis under drought and provided key clues for future molecular breeding in .
作为一种重要的经济作物,[作物名称]在干旱和半干旱地区广泛种植。关于干旱胁迫下光合作用的研究广泛开展,但[作物名称]方面尚未有相关研究。在此,利用生理指标和转录组数据,对两个[作物名称]品种(FJ,[作物名称]品种“凤椒”;HJ,[作物名称]品种“汉椒”)在干旱胁迫下的光合作用进行了分析。干旱降低了气孔开度和气孔导度(Gsw),降低了蒸腾速率(E)和胞间CO₂浓度(Ci),并降低了叶绿素和类胡萝卜素含量,从而降低了[作物名称]的净光合速率(Pn)。HJ较高的光合速率源于其较高的叶绿素含量、较大的气孔开度和Gsw以及较高的Ci。加权基因共表达网络分析(WGCNA)鉴定出了几个脱落酸信号转导基因([基因名称1]、[基因名称2]和[基因名称3])、编码LCH的基因([基因名称4])以及叶绿素代谢基因([基因名称5]、[基因名称6]和[基因名称7])。此外,七个转录因子基因被鉴定为干旱条件下调节光合作用的重要因子。总体而言,首先构建了[作物名称]干旱胁迫下的光合响应模型,并鉴定了干旱胁迫下参与光合作用的关键基因。因此,我们的研究结果为干旱条件下的光合作用提供了重要信息,并为[作物名称]未来的分子育种提供了关键线索。