Pi Shaohua, Hormel Tristan T, Wang Bingjie, Bailey Steven T, Hwang Thomas S, Huang David, Morrison John C, Jia Yali
Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
Biomed Opt Express. 2022 Aug 22;13(9):4889-4906. doi: 10.1364/BOE.469308. eCollection 2022 Sep 1.
Optical coherence tomography (OCT) is widely used in ophthalmic practice because it can visualize retinal structure and vasculature in vivo and 3-dimensionally (3D). Even though OCT procedures yield data volumes, clinicians typically interpret the 3D images using two-dimensional (2D) data subsets, such as cross-sectional scans or projections. Since a single OCT volume can contain hundreds of cross-sections (each of which must be processed with retinal layer segmentation to produce images), a thorough manual analysis of the complete OCT volume can be prohibitively time-consuming. Furthermore, 2D reductions of the full OCT volume may obscure relationships between disease progression and the (volumetric) location of pathology within the retina and can be prone to mis-segmentation artifacts. In this work, we propose a novel framework that can detect several retinal pathologies in three dimensions using structural and angiographic OCT. Our framework operates by detecting deviations in reflectance, angiography, and simulated perfusion from a percent depth normalized standard retina created by merging and averaging scans from healthy subjects. We show that these deviations from the standard retina can highlight multiple key features, while the depth normalization obviates the need to segment several retinal layers. We also construct a composite pathology index that measures average deviation from the standard retina in several categories (hypo- and hyper-reflectance, nonperfusion, presence of choroidal neovascularization, and thickness change) and show that this index correlates with DR severity. Requiring minimal retinal layer segmentation and being fully automated, this 3D framework has a strong potential to be integrated into commercial OCT systems and to benefit ophthalmology research and clinical care.
光学相干断层扫描(OCT)在眼科实践中被广泛应用,因为它能够在体内以三维(3D)方式可视化视网膜结构和脉管系统。尽管OCT程序会产生大量数据,但临床医生通常使用二维(2D)数据子集(如横断面扫描或投影)来解读3D图像。由于单个OCT容积可能包含数百个横断面(每个横断面都必须通过视网膜层分割进行处理以生成图像),对完整的OCT容积进行全面的手动分析可能会极其耗时。此外,完整OCT容积的2D缩减可能会掩盖疾病进展与视网膜内病理(容积)位置之间的关系,并且容易出现误分割伪影。在这项工作中,我们提出了一种新颖的框架,该框架可以使用结构和血管造影OCT在三维空间中检测多种视网膜病变。我们的框架通过检测与通过合并和平均健康受试者的扫描创建的百分比深度归一化标准视网膜相比,在反射率、血管造影和模拟灌注方面的偏差来运行。我们表明,与标准视网膜的这些偏差可以突出多个关键特征,而深度归一化无需分割多个视网膜层。我们还构建了一个综合病理指数,该指数测量在几个类别(低反射和高反射、无灌注、脉络膜新生血管的存在以及厚度变化)中与标准视网膜的平均偏差,并表明该指数与糖尿病视网膜病变(DR)的严重程度相关。由于只需最少的视网膜层分割且完全自动化,这个3D框架具有很强的潜力被集成到商业OCT系统中,并造福于眼科研究和临床护理。