Suppr超能文献

使用机器学习对包括精神分裂症、双相情感障碍和重度抑郁症在内的精神疾病进行分类。

Classification for psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder using machine learning.

作者信息

Yang Qingxia, Xing Qiaowen, Yang Qingfang, Gong Yaguo

机构信息

Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China.

出版信息

Comput Struct Biotechnol J. 2022 Sep 12;20:5054-5064. doi: 10.1016/j.csbj.2022.09.014. eCollection 2022.

Abstract

Schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD) are the most common psychiatric disorders. Because there were lots of overlaps among these disorders from genetic epidemiology and molecular genetics, it is hard to realize the diagnoses of these psychiatric disorders. Currently, plenty of studies have been conducted for contributing to the diagnoses of these diseases. However, constructing a classification model with superior performance for differentiating SCZ, BP, and MDD samples is still a great challenge. In this study, the transcriptomic data was applied for discovering key genes and constructing a classification model. In this dataset, there were 268 samples including four groups (67 SCZ patients, 40 BP patients, 57 MDD patients, and 104 healthy controls), which were applied for constructing a classification model. First, 269 probes of differentially expressed genes (DEGs) among four sample groups were identified by the feature selection method. Second, these DEGs were validated by the literature review including disease relevance with the psychiatric disorders of these DEGs, the hub genes in the PPI (protein-protein interaction) network, and GO (gene ontology) terms and pathways. Third, a classification model was constructed using the identified DEGs by machine learning method to classify different groups. The ROC (receiver operator characteristic) curve and AUC (area under the curve) value were used to assess the classification capacity of the model. In summary, this classification model might provide clues for the diagnoses of these psychiatric disorders.

摘要

精神分裂症(SCZ)、双相情感障碍(BP)和重度抑郁症(MDD)是最常见的精神疾病。由于这些疾病在遗传流行病学和分子遗传学方面存在许多重叠,因此难以实现对这些精神疾病的诊断。目前,已经进行了大量研究以促进这些疾病的诊断。然而,构建一个具有卓越性能的分类模型以区分SCZ、BP和MDD样本仍然是一项巨大的挑战。在本研究中,转录组数据被用于发现关键基因并构建分类模型。在这个数据集中,有268个样本,包括四组(67名SCZ患者、40名BP患者、57名MDD患者和104名健康对照),这些样本被用于构建分类模型。首先,通过特征选择方法在四个样本组中鉴定出269个差异表达基因(DEG)探针。其次,通过文献综述对这些DEG进行验证,包括这些DEG与精神疾病的疾病相关性、PPI(蛋白质-蛋白质相互作用)网络中的枢纽基因以及GO(基因本体)术语和途径。第三,使用机器学习方法利用鉴定出的DEG构建分类模型以对不同组进行分类。ROC(受试者工作特征)曲线和AUC(曲线下面积)值用于评估模型的分类能力。总之,这个分类模型可能为这些精神疾病的诊断提供线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe85/9486057/0aaf8676d145/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验