Suppr超能文献

探索精神分裂症、机器学习和基因组学的交叉点:范围综述

Exploring the Intersection of Schizophrenia, Machine Learning, and Genomics: Scoping Review.

作者信息

Hudon Alexandre, Beaudoin Mélissa, Phraxayavong Kingsada, Potvin Stéphane, Dumais Alexandre

机构信息

Department of psychiatry and addictology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.

Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montréal, QC, Canada.

出版信息

JMIR Bioinform Biotechnol. 2024 Nov 15;5:e62752. doi: 10.2196/62752.

Abstract

BACKGROUND

An increasing body of literature highlights the integration of machine learning with genomic data in psychiatry, particularly for complex mental health disorders such as schizophrenia. These advanced techniques offer promising potential for uncovering various facets of these disorders. A comprehensive review of the current applications of machine learning in conjunction with genomic data within this context can significantly enhance our understanding of the current state of research and its future directions.

OBJECTIVE

This study aims to conduct a systematic scoping review of the use of machine learning algorithms with genomic data in the field of schizophrenia.

METHODS

To conduct a systematic scoping review, a search was performed in the electronic databases MEDLINE, Web of Science, PsycNet (PsycINFO), and Google Scholar from 2013 to 2024. Studies at the intersection of schizophrenia, genomic data, and machine learning were evaluated.

RESULTS

The literature search identified 2437 eligible articles after removing duplicates. Following abstract screening, 143 full-text articles were assessed, and 121 were subsequently excluded. Therefore, 21 studies were thoroughly assessed. Various machine learning algorithms were used in the identified studies, with support vector machines being the most common. The studies notably used genomic data to predict schizophrenia, identify schizophrenia features, discover drugs, classify schizophrenia amongst other mental health disorders, and predict the quality of life of patients.

CONCLUSIONS

Several high-quality studies were identified. Yet, the application of machine learning with genomic data in the context of schizophrenia remains limited. Future research is essential to further evaluate the portability of these models and to explore their potential clinical applications.

摘要

背景

越来越多的文献强调了机器学习与精神病学基因组数据的整合,特别是对于精神分裂症等复杂的心理健康障碍。这些先进技术为揭示这些障碍的各个方面提供了有前景的潜力。在此背景下,对机器学习与基因组数据当前应用的全面综述可以显著增强我们对当前研究现状及其未来方向的理解。

目的

本研究旨在对精神分裂症领域中机器学习算法与基因组数据的使用进行系统的范围综述。

方法

为进行系统的范围综述,于2013年至2024年在电子数据库MEDLINE、科学网、PsycNet(PsycINFO)和谷歌学术中进行了检索。对精神分裂症、基因组数据和机器学习交叉领域的研究进行了评估。

结果

文献检索在去除重复项后确定了2437篇符合条件的文章。经过摘要筛选,评估了143篇全文文章,随后排除了121篇。因此,对21项研究进行了全面评估。在已确定的研究中使用了各种机器学习算法,其中支持向量机最为常见。这些研究显著地利用基因组数据来预测精神分裂症、识别精神分裂症特征、发现药物、在其他心理健康障碍中对精神分裂症进行分类以及预测患者的生活质量。

结论

确定了几项高质量研究。然而,机器学习与基因组数据在精神分裂症背景下的应用仍然有限。未来的研究对于进一步评估这些模型的可移植性并探索其潜在的临床应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1b/11607571/b80d00cd9d81/bioinform_v5i1e62752_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验