Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Front Immunol. 2022 Sep 16;13:922929. doi: 10.3389/fimmu.2022.922929. eCollection 2022.
Necroptosis is a regulated form of cell necroptotic process, playing a pivotal role in tumors. In renal cell cancer (RCC), inhibiting necroptosis could promote the proliferation of tumor cells. However, the molecular mechanisms and prognosis prediction of necroptotic-process-related genes in RCC are still unclear. In this study, we first identified the necroptotic process prognosis-related genes (NPRGss) by analyzing the kidney renal clear cell carcinoma (KIRC) data in The Cancer Genome Atlas (TCGA, n=607). We systematically analyzed the expression alteration, clinical relevance, and molecular mechanisms of NPRGss in renal clear cell carcinoma. We constructed an NPRGs risk signature utilizing the least absolute shrinkage and selection operator (LASSO) Cox regression analysis on the basis of the expression of seven NPRGss. We discovered that the overall survival (OS) of KIRC patients differed significantly in high- or low-NPRGs-risk groups. The univariate/multivariate Cox regression revealed that the NPRGs risk signature was an independent prognosis factor in RCC. The gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to explore the molecular mechanisms of NPRGss. Immune-/metabolism-related pathways showed differential enrichment in high-/low-NPRGs-risk groups. The E-MTAB-1980, TCGA-KIRP, GSE78220, the cohort of Alexandra et al., and IMvigor210 cohort datasets were respectively used as independent validation cohorts of NPRGs risk signature. The patients in high- or low-NPRGs-risk groups showed different drug sensitivity, immune checkpoint expression, and immune therapy response. Finally, we established a nomogram based on the NPRGs risk signature, stage, grade, and age for eventual clinical translation; the nomogram possesses an accurate and stable prediction effect. The signature could predict patients' prognosis and therapy response, which provides the foundation for further clinical therapeutic strategies for RCC patients.
细胞程序性坏死是一种受调控的细胞坏死过程,在肿瘤中发挥关键作用。在肾细胞癌(RCC)中,抑制细胞程序性坏死可促进肿瘤细胞的增殖。然而,RCC 中与细胞程序性坏死过程相关基因的分子机制和预后预测仍然不清楚。在这项研究中,我们首先通过分析癌症基因组图谱(TCGA,n=607)中的肾透明细胞癌(KIRC)数据,鉴定了细胞程序性坏死过程预后相关基因(NPRGss)。我们系统地分析了 NPRGss 在肾透明细胞癌中的表达改变、临床相关性和分子机制。我们基于七个 NPRGss 的表达,利用最小绝对收缩和选择算子(LASSO)Cox 回归分析构建了 NPRGs 风险特征。我们发现 KIRC 患者的总体生存率(OS)在高或低-NPRGs 风险组之间存在显著差异。单因素/多因素 Cox 回归显示,NPRGs 风险特征是 RCC 的独立预后因素。基因集富集分析(GSEA)和基因集变异分析(GSVA)用于探索 NPRGss 的分子机制。免疫/代谢相关途径在高/低-NPRGs 风险组中显示出不同的富集。E-MTAB-1980、TCGA-KIRP、GSE78220、Alexandra 等人的队列和 IMvigor210 队列数据集分别作为 NPRGs 风险特征的独立验证队列。高或低-NPRGs 风险组的患者表现出不同的药物敏感性、免疫检查点表达和免疫治疗反应。最后,我们基于 NPRGs 风险特征、分期、分级和年龄建立了一个列线图,用于最终的临床转化;该列线图具有准确和稳定的预测效果。该特征可以预测患者的预后和治疗反应,为进一步制定 RCC 患者的临床治疗策略提供了基础。