Suppr超能文献

OncoPredict:一个用于从细胞系筛选数据预测体内或癌症患者药物反应和生物标志物的 R 包。

oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data.

机构信息

Department of Bioinformatics & Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.

Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab260.

Abstract

Cell line drug screening datasets can be utilized for a range of different drug discovery applications from drug biomarker discovery to building translational models of drug response. Previously, we described three separate methodologies to (1) correct for general levels of drug sensitivity to enable drug-specific biomarker discovery, (2) predict clinical drug response in patients and (3) associate these predictions with clinical features to perform in vivo drug biomarker discovery. Here, we unite and update these methodologies into one R package (oncoPredict) to facilitate the development and adoption of these tools. This new OncoPredict R package can be applied to various in vitro and in vivo contexts for drug and biomarker discovery.

摘要

细胞系药物筛选数据集可用于多种不同的药物发现应用,从药物生物标志物发现到建立药物反应的转化模型。此前,我们描述了三种独立的方法来(1)纠正药物敏感性的一般水平,以实现药物特异性生物标志物发现,(2)预测患者的临床药物反应,以及(3)将这些预测与临床特征相关联,以进行体内药物生物标志物发现。在这里,我们将这些方法整合并更新到一个 R 包(oncoPredict)中,以促进这些工具的开发和采用。这个新的 OncoPredict R 包可应用于各种体外和体内环境中的药物和生物标志物发现。

相似文献

2
Biomarker identification for statin sensitivity of cancer cell lines.癌细胞系他汀敏感性的生物标志物鉴定。
Biochem Biophys Res Commun. 2018 Jan 1;495(1):659-665. doi: 10.1016/j.bbrc.2017.11.065. Epub 2017 Nov 14.
7
Network-based drug sensitivity prediction.基于网络的药物敏感性预测。
BMC Med Genomics. 2020 Dec 28;13(Suppl 11):193. doi: 10.1186/s12920-020-00829-3.

引用本文的文献

本文引用的文献

10
A Landscape of Pharmacogenomic Interactions in Cancer.癌症中的药物基因组学相互作用全景
Cell. 2016 Jul 28;166(3):740-754. doi: 10.1016/j.cell.2016.06.017. Epub 2016 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验