National University of Sciences and Technology, Islamabad, Pakistan.
National University of Technology (NUTECH), Islamabad, Pakistan.
PLoS One. 2022 Oct 3;17(10):e0275524. doi: 10.1371/journal.pone.0275524. eCollection 2022.
This study aims to propose a novel and high-accuracy prediction model of plastic limit (PL) based on soil particles passing through sieve # 200 (0.075 mm) using gene expression programming (GEP). PL is used for the classification of fine-grained soils which are particles passing from sieve # 200. However, it is conventionally evaluated using sieve # 40 passing material. According to literature, PL should be determined using sieve # 200 passing material. Although, PL200 is considered the accurate representation of plasticity of soil, its' determination in laboratory is time consuming and difficult task. Additionally, it is influenced by clay and silt content along with sand particles. Thus, artificial intelligence-based techniques are considered viable solution to propose the prediction model which can incorporate multiple influencing parameters. In this regard, the laboratory experimental data was utilized to develop prediction model for PL200 using gene expression programming considering sand, clay, silt and PL using sieve 40 material (PL40) as input parameters. The prediction model was validated through multiple statistical checks such as correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and relatively squared error (RSE). The sensitivity and parametric studies were also performed to further justify the accuracy and reliability of the proposed model. The results show that the model meets all of the criteria and can be used in the field.
本研究旨在提出一种新的、高精度的基于土粒通过 200 号筛(0.075 毫米)的基因表达编程(GEP)预测塑性界限(PL)的模型。PL 用于对通过 200 号筛的细粒土进行分类。然而,它通常使用通过 40 号筛的材料进行评估。根据文献,PL 应该使用通过 200 号筛的材料来确定。尽管 200 号筛土的 PL 被认为是土塑性的准确表示,但在实验室中确定它是一项耗时且困难的任务。此外,它还受到粘土和粉土含量以及砂粒的影响。因此,基于人工智能的技术被认为是提出预测模型的可行解决方案,该模型可以包含多个影响参数。在这方面,利用实验室实验数据,使用基因表达编程考虑砂、粘土、粉土和通过 40 号筛的材料(PL40)作为输入参数来开发 PL200 的预测模型。通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和相对平方误差(RSE)等多个统计检验对预测模型进行了验证。还进行了敏感性和参数研究,以进一步证明所提出模型的准确性和可靠性。结果表明,该模型符合所有标准,可在现场使用。