Li Yin, Lv Yang, Guo Jian, Wang Yubo, Tian Youjin, Gao Hua, He Jinrong
College of Information Engineering, Northwest A&F University, Yangling, Xianyang 712100, China.
Shaanxi Engineering Research Center of Agriculture Information Intelligent Perception and Analysis, Yangling, Xianyang 712100, China.
Insects. 2024 Jun 21;15(7):463. doi: 10.3390/insects15070463.
This study addresses the challenges in plant pest and disease prediction within the context of smart agriculture, highlighting the need for efficient data processing techniques. In response to the limitations of existing models, which are characterized by slow training speeds and a low prediction accuracy, we introduce an innovative prediction method that integrates gene expression programming (GEP) with support vector machines (SVM). Our approach, the gene expression programming-support vector machine (GEP-SVM) model, begins with encoding and fitness function determination, progressing through cycles of selection, crossover, mutation, and the application of a convergence criterion. This method uniquely employs individual gene values as parameters for SVM, optimizing them through a grid search technique to refine genetic parameters. We tested this model using historical data on wheat blossom midges in Shaanxi Province, spanning from 1933 to 2010, and compared its performance against traditional methods, such as GEP, SVM, naive Bayes, K-nearest neighbor, and BP neural networks. Our findings reveal that the GEP-SVM model achieves a leading back-generation accuracy rate of 90.83%, demonstrating superior generalization and fitting capabilities. These results not only enhance the computational efficiency of pest and disease prediction in agriculture but also provide a scientific foundation for future predictive endeavors, contributing significantly to the optimization of agricultural production strategies.
本研究探讨了智能农业背景下植物病虫害预测面临的挑战,强调了高效数据处理技术的必要性。针对现有模型训练速度慢、预测准确率低的局限性,我们引入了一种将基因表达式编程(GEP)与支持向量机(SVM)相结合的创新预测方法。我们的方法,即基因表达式编程-支持向量机(GEP-SVM)模型,首先进行编码和适应度函数确定,然后经过选择、交叉、变异循环以及应用收敛准则。该方法独特地将个体基因值用作支持向量机的参数,并通过网格搜索技术对其进行优化以细化遗传参数。我们使用1933年至2010年陕西省小麦吸浆虫的历史数据对该模型进行了测试,并将其性能与传统方法(如GEP、SVM、朴素贝叶斯、K近邻和BP神经网络)进行了比较。我们的研究结果表明,GEP-SVM模型的回代准确率领先,达到了90.83%,展现出卓越的泛化和拟合能力。这些结果不仅提高了农业病虫害预测的计算效率,还为未来的预测工作提供了科学依据,对优化农业生产策略具有重要意义。