Suppr超能文献

利用基因表达和人工智能编程预测环保型塑料砂铺地砖的抗压强度。

Predicting compressive strength of eco-friendly plastic sand paver blocks using gene expression and artificial intelligence programming.

机构信息

School of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.

Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.

出版信息

Sci Rep. 2023 Jul 27;13(1):12149. doi: 10.1038/s41598-023-39349-2.

Abstract

Plastic sand paver blocks provide a sustainable alternative by using plastic waste and reducing the need for cement. This innovative approach leads to a more sustainable construction sector by promoting environmental preservation. No model or Equation has been devised that can predict the compressive strength of these blocks. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) to develop empirical models to forecast the compressive strength of plastic sand paver blocks (PSPB) comprised of plastic, sand, and fibre in an effort to advance the field. The database contains 135 results for compressive strength with seven input parameters. The R values of 0.87 for GEP and 0.91 for MEP for compressive strength reveal a relatively significant relationship between predicted and actual values. MEP outperformed GEP by displaying a higher R and lower values for statistical evaluations. In addition, a sensitivity analysis was conducted, which revealed that the sand grain size and percentage of fibres play an essential part in compressive strength. It was estimated that they contributed almost 50% of the total. The outcomes of this research have the potential to promote the reuse of PSPB in the building of green environments, hence boosting environmental protection and economic advantage.

摘要

塑料沙铺地砖通过使用塑料废物和减少对水泥的需求,提供了一种可持续的替代品。这种创新方法通过促进环境保护,引领更可持续的建筑行业发展。目前还没有设计出可以预测这些砌块抗压强度的模型或方程式。本研究利用基因表达编程(GEP)和多表达式编程(MEP)来开发经验模型,以预测由塑料、沙子和纤维组成的塑料沙铺地砖(PSPB)的抗压强度,从而推动该领域的发展。该数据库包含 135 个抗压强度结果和 7 个输入参数。GEP 和 MEP 的抗压强度的 R 值分别为 0.87 和 0.91,表明预测值和实际值之间存在相对显著的关系。MEP 的 R 值更高,统计评估的数值更低,表现优于 GEP。此外,还进行了敏感性分析,结果表明,沙粒大小和纤维百分比对抗压强度起着至关重要的作用。据估计,它们几乎占了总贡献的 50%。这项研究的结果有可能促进 PSPB 在绿色环境建筑中的再利用,从而提高环境保护和经济优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71e7/10374568/2df69592de18/41598_2023_39349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验