Suppr超能文献

用于生物工程功能性人肠道上皮的隐窝-绒毛支架结构。

Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium.

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.

出版信息

ACS Biomater Sci Eng. 2022 Nov 14;8(11):4942-4955. doi: 10.1021/acsbiomaterials.2c00851. Epub 2022 Oct 3.

Abstract

Crypt-villus architecture in the small intestine is crucial for the structural integrity of the intestinal epithelium and maintenance of gut homeostasis. We utilized three-dimensional (3D) printing and inverse molding techniques to form three-dimensional (3D) spongy scaffold systems that resemble the intestinal crypt-villus microarchitecture. The scaffolds consist of silk fibroin protein with curved lumens with rows of protruding villi with invaginating crypts to generate the architecture. Intestinal cell (Caco-2, HT29-MTX) attachment and growth, as well as long-term culture support were demonstrated with cell polarization and tissue barrier properties compared to two-dimensional (2D) Transwell culture controls. Further, physiologically relevant oxygen gradients were generated in the 3D system. The various advantages of this system may be ascribed to the more physiologically relevant 3D environment, offering a system for the exploration of disease pathogenesis, host-microbiome interactions, and therapeutic discovery.

摘要

小肠的隐窝-绒毛结构对于肠道上皮的结构完整性和肠道内环境的维持至关重要。我们利用三维(3D)打印和反向成型技术,形成了类似于肠道隐窝-绒毛微观结构的 3D 海绵状支架系统。支架由丝素蛋白组成,具有弯曲的腔道,腔道上排列着一排排突出的绒毛,凹陷处形成隐窝,从而产生这种结构。与二维(2D)Transwell 培养对照相比,该支架可促进肠道细胞(Caco-2、HT29-MTX)的黏附与生长,并支持长期培养,表现出细胞极化和组织屏障特性。此外,该 3D 系统中还可产生具有生理相关性的氧气梯度。该系统具有多种优势,可归因于更接近生理状态的 3D 环境,为探索疾病发病机制、宿主-微生物组相互作用和治疗发现提供了一种系统。

相似文献

1
Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium.
ACS Biomater Sci Eng. 2022 Nov 14;8(11):4942-4955. doi: 10.1021/acsbiomaterials.2c00851. Epub 2022 Oct 3.
2
A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.
Biomaterials. 2017 Jun;128:44-55. doi: 10.1016/j.biomaterials.2017.03.005. Epub 2017 Mar 6.
3
Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography.
Biomaterials. 2019 Nov;221:119404. doi: 10.1016/j.biomaterials.2019.119404. Epub 2019 Aug 5.
4
Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium.
Acta Biomater. 2017 Oct 15;62:128-143. doi: 10.1016/j.actbio.2017.08.035. Epub 2017 Aug 30.
5
Micro-patterned endogenous stroma equivalent induces polarized crypt-villus architecture of human small intestinal epithelium.
Acta Biomater. 2018 Nov;81:43-59. doi: 10.1016/j.actbio.2018.09.061. Epub 2018 Sep 30.
6
Intestinal Villi Model with Blood Capillaries Fabricated Using Collagen-Based Bioink and Dual-Cell-Printing Process.
ACS Appl Mater Interfaces. 2018 Dec 5;10(48):41185-41196. doi: 10.1021/acsami.8b17410. Epub 2018 Nov 21.
7
A bioprinted 3D gut model with crypt-villus structures to mimic the intestinal epithelial-stromal microenvironment.
Biomater Adv. 2023 Oct;153:213534. doi: 10.1016/j.bioadv.2023.213534. Epub 2023 Jun 22.
9
Use of l-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering.
Biomater Sci. 2019 Sep 24;7(10):4310-4324. doi: 10.1039/c9bm00541b.
10
Dual-Material 3D-Printed Intestinal Model Devices with Integrated Villi-like Scaffolds.
ACS Appl Mater Interfaces. 2021 Dec 15;13(49):58434-58446. doi: 10.1021/acsami.1c22185. Epub 2021 Dec 6.

引用本文的文献

1
Advancements and Challenges in Modeling Mechanobiology in Intestinal Host-Microbiota Interaction.
ACS Appl Mater Interfaces. 2025 Jun 4;17(22):31698-31713. doi: 10.1021/acsami.4c20961. Epub 2025 May 18.
2
Biomimetic culture substrates for modelling homeostatic intestinal epithelium in vitro.
Nat Commun. 2025 May 3;16(1):4120. doi: 10.1038/s41467-025-59459-x.
4
Fibroblasts modulate epithelial cell behavior within the proliferative niche and differentiated cell zone within a human colonic crypt model.
Front Bioeng Biotechnol. 2024 Dec 16;12:1506976. doi: 10.3389/fbioe.2024.1506976. eCollection 2024.
5
Microfluidic Gastrointestinal Cell Culture Technologies-Improvements in the Past Decade.
Biosensors (Basel). 2024 Sep 19;14(9):449. doi: 10.3390/bios14090449.
8
Challenges in Permeability Assessment for Oral Drug Product Development.
Pharmaceutics. 2023 Sep 28;15(10):2397. doi: 10.3390/pharmaceutics15102397.
9
Bio-Microfabrication of 2D and 3D Biomimetic Gut-on-a-Chip.
Micromachines (Basel). 2023 Sep 4;14(9):1736. doi: 10.3390/mi14091736.

本文引用的文献

1
Bioengineered 3D Tissue Model of Intestine Epithelium with Oxygen Gradients to Sustain Human Gut Microbiome.
Adv Healthc Mater. 2022 Aug;11(16):e2200447. doi: 10.1002/adhm.202200447. Epub 2022 Jun 19.
2
Promises and Challenges of Organoid-Guided Precision Medicine.
Med. 2021 Sep 10;2(9):1011-1026. doi: 10.1016/j.medj.2021.08.005.
3
In vitro models of intestinal epithelium: Toward bioengineered systems.
J Tissue Eng. 2021 Feb 1;12:2041731420985202. doi: 10.1177/2041731420985202. eCollection 2021 Jan-Dec.
4
In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review.
J Control Release. 2021 Jul 10;335:247-268. doi: 10.1016/j.jconrel.2021.05.028. Epub 2021 May 24.
5
Harnessing Colon Chip Technology to Identify Commensal Bacteria That Promote Host Tolerance to Infection.
Front Cell Infect Microbiol. 2021 Mar 12;11:638014. doi: 10.3389/fcimb.2021.638014. eCollection 2021.
6
Bi-layered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue.
Adv Funct Mater. 2020 Apr 27;30(17). doi: 10.1002/adfm.202000543. Epub 2020 Feb 27.
7
Direct comparison of 3D and 2D cultivation reveals higher osteogenic capacity of elderly osteoblasts in 3D.
J Orthop Surg Res. 2021 Jan 6;16(1):13. doi: 10.1186/s13018-020-02153-z.
9
Bioengineering Novel Co-culture Models That Represent the Human Intestinal Mucosa With Improved Caco-2 Structure and Barrier Function.
Front Bioeng Biotechnol. 2020 Aug 31;8:992. doi: 10.3389/fbioe.2020.00992. eCollection 2020.
10
InVitro Models of Intestine Innate Immunity.
Trends Biotechnol. 2021 Mar;39(3):274-285. doi: 10.1016/j.tibtech.2020.07.009. Epub 2020 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验