Suppr超能文献

利用结肠芯片技术鉴定促进宿主对感染产生耐受性的共生细菌。

Harnessing Colon Chip Technology to Identify Commensal Bacteria That Promote Host Tolerance to Infection.

作者信息

Gazzaniga Francesca S, Camacho Diogo M, Wu Meng, Silva Palazzo Matheus F, Dinis Alexandre L M, Grafton Francis N, Cartwright Mark J, Super Michael, Kasper Dennis L, Ingber Donald E

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States.

Department of Immunology, Harvard Medical School, Boston, MA, United States.

出版信息

Front Cell Infect Microbiol. 2021 Mar 12;11:638014. doi: 10.3389/fcimb.2021.638014. eCollection 2021.

Abstract

Commensal bacteria within the gut microbiome contribute to development of host tolerance to infection, however, identifying specific microbes responsible for this response is difficult. Here we describe methods for developing microfluidic organ-on-a-chip models of small and large intestine lined with epithelial cells isolated from duodenal, jejunal, ileal, or colon organoids derived from wild type or transgenic mice. To focus on host-microbiome interactions, we carried out studies with the mouse Colon Chip and demonstrated that it can support co-culture with living gut microbiome and enable assessment of effects on epithelial adhesion, tight junctions, barrier function, mucus production, and cytokine release. Moreover, infection of the Colon Chips with the pathogenic bacterium, , resulted in epithelial detachment, decreased tight junction staining, and increased release of chemokines (CXCL1, CXCL2, and CCL20) that closely mimicked changes previously seen in mice. Symbiosis between microbiome bacteria and the intestinal epithelium was also recapitulated by populating Colon Chips with complex living mouse or human microbiome. By taking advantage of differences in the composition between complex microbiome samples cultured on each chip using 16s sequencing, we were able to identify as a positive contributor to host tolerance, confirming past findings obtained in mouse experiments. Thus, mouse Intestine Chips may represent new experimental platforms for identifying particular bacterial strains that modulate host response to pathogens, as well as for investigating the cellular and molecular basis of host-microbe interactions.

摘要

肠道微生物群中的共生细菌有助于宿主对感染产生耐受性,然而,确定负责这种反应的特定微生物却很困难。在这里,我们描述了开发微流控芯片器官模型的方法,该模型模拟小肠和大肠,内衬从野生型或转基因小鼠的十二指肠、空肠、回肠或结肠类器官中分离出的上皮细胞。为了专注于宿主-微生物群的相互作用,我们使用小鼠结肠芯片进行了研究,并证明它可以支持与活的肠道微生物群共培养,并能够评估对上皮细胞粘附、紧密连接、屏障功能、粘液分泌和细胞因子释放的影响。此外,用病原菌感染结肠芯片会导致上皮细胞脱离、紧密连接染色减少以及趋化因子(CXCL1、CXCL2和CCL20)释放增加,这些变化与之前在小鼠身上观察到的变化非常相似。通过用复杂的活小鼠或人类微生物群填充结肠芯片,也再现了微生物群细菌与肠上皮之间的共生关系。利用16s测序分析每个芯片上培养的复杂微生物群样本之间的组成差异,我们能够确定[具体细菌名称]是宿主耐受性的积极贡献者,证实了过去在小鼠实验中获得的结果。因此,小鼠肠道芯片可能代表了新的实验平台,用于识别调节宿主对病原体反应的特定细菌菌株,以及研究宿主-微生物相互作用的细胞和分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b101/7996096/bf46965b0efe/fcimb-11-638014-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验