ACS Nano. 2022 Oct 25;16(10):17466-17477. doi: 10.1021/acsnano.2c09015. Epub 2022 Oct 3.
The continuing emergence of variants of the SARS-CoV-2 virus requires the development of modular molecular therapies. Here, we engineered a recombinant amphiphilic protein, oleosin, to spontaneously self-assemble into multivalent micellar nanostructures which can block the Spike S1 protein of SARS-CoV-2 pseudoviruses (PVs). Short recombinant proteins like oleosin can be formulated more easily than antibodies and can be functionalized with precision through genetic engineering. We cloned S1-binding mini-protein genes called LCB previously designed by David Baker's laboratory (UW Seattle), to the N-terminus of oleosin, expressing Oleo-LCB proteins in . These proteins largely formed 10-100 nm micelles as verified by dynamic light scattering. Two proteins, Oleo-LCB1 and Oleo-LCB3, were seen to completely and irreversibly block transduction by both wild-type and delta variant PVs into 293T-hsACE2 cells at 10 μM. Presented in multivalent micelles, these proteins reduced transduction by PVs down to a functional protein concentration of 5 nM. Additionally, Oleo-LCB1 micelles outperformed corresponding synthetic LCB1 mini-proteins in reducing transduction by PVs. Tunable aqueous solubility of recombinant oleosin allowed incorporation of peptides/mini-proteins at high concentrations within micelles, thus enhancing drug loading. To validate the potential multifunctionality of the micelles, we showed that certain combinations of Oleo-LCB1 and Oleo-LCB3 performed much better than the individual proteins at the same concentration. These micelles, which we showed to be non-toxic to human cells, are thus a promising step toward the design of modular, multifunctional therapeutics that could bind to and inactivate multiple receptors and proteins necessary for the infection of the SARS-CoV-2 virus.
不断出现的 SARS-CoV-2 病毒变体需要开发模块化的分子疗法。在这里,我们设计了一种重组两亲性蛋白油质体,使其自发自组装成多价胶束纳米结构,从而阻断 SARS-CoV-2 假病毒(PVs)的 Spike S1 蛋白。像油质体这样的短重组蛋白比抗体更容易配制,并且可以通过基因工程精确地进行功能化。我们克隆了之前由 David Baker 实验室(西雅图华盛顿大学)设计的 S1 结合的小蛋白基因 LCB,将其连接到油质体的 N 端,在. 中表达 Oleo-LCB 蛋白。这些蛋白主要形成 10-100nm 的胶束,这一点通过动态光散射得到了验证。两种蛋白,Oleo-LCB1 和 Oleo-LCB3,被发现以 10μM 的浓度完全不可逆地阻断了野生型和 delta 变体 PVs 进入 293T-hsACE2 细胞的转导。以多价胶束形式呈现时,这些蛋白将 PVs 的转导降低到功能性蛋白浓度为 5nM。此外,Oleo-LCB1 胶束在降低 PVs 的转导方面优于相应的合成 LCB1 小蛋白。重组油质体的可调节的水溶性允许在胶束内高浓度地掺入肽/小蛋白,从而增强药物载量。为了验证胶束的潜在多功能性,我们表明,在相同浓度下,Oleo-LCB1 和 Oleo-LCB3 的某些组合的性能明显优于单个蛋白。我们表明这些胶束对人细胞无毒,因此是朝着设计模块化、多功能治疗剂迈出的有希望的一步,这种治疗剂可以结合并失活 SARS-CoV-2 病毒感染所需的多个受体和蛋白。