Suppr超能文献

人类组合泛化的课程学习。

Curriculum learning for human compositional generalization.

机构信息

Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2205582119. doi: 10.1073/pnas.2205582119. Epub 2022 Oct 3.

Abstract

Generalization (or transfer) is the ability to repurpose knowledge in novel settings. It is often asserted that generalization is an important ingredient of human intelligence, but its extent, nature, and determinants have proved controversial. Here, we examine this ability with a paradigm that formalizes the transfer learning problem as one of recomposing existing functions to solve unseen problems. We find that people can generalize compositionally in ways that are elusive for standard neural networks and that human generalization benefits from training regimes in which items are axis aligned and temporally correlated. We describe a neural network model based around a Hebbian gating process that can capture how human generalization benefits from different training curricula. We additionally find that adult humans tend to learn composable functions asynchronously, exhibiting discontinuities in learning that resemble those seen in child development.

摘要

泛化(或迁移)是在新环境中重新应用知识的能力。人们常说,泛化是人类智能的一个重要组成部分,但它的程度、性质和决定因素一直存在争议。在这里,我们通过一种形式化迁移学习问题的范例来研究这种能力,即将重新组合现有功能以解决未知问题的过程形式化。我们发现,人们可以以标准神经网络难以实现的方式进行组合泛化,并且人类的泛化受益于训练模式,在这种模式中,项目是轴对齐的,并且具有时间相关性。我们描述了一个基于赫布门控过程的神经网络模型,该模型可以捕捉人类泛化如何受益于不同的训练课程。我们还发现,成年人类往往会异步地学习可组合的功能,其学习过程中存在类似于儿童发展过程中出现的不连续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1db/9564093/313d54d6d315/pnas.2205582119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验