Suppr超能文献

面向GAN生成图片的视觉语义分析的邻域算法

Neighboring Algorithm for Visual Semantic Analysis toward GAN-Generated Pictures.

作者信息

Zhang Lu-Ming, Sheng Yichuan

机构信息

Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Zhejiang, Jinhua 321007, China.

Hithink RoyalFlush Information Network Co., Ltd., Zhejiang, Hangzhou, China.

出版信息

Appl Bionics Biomech. 2022 Sep 23;2022:2188152. doi: 10.1155/2022/2188152. eCollection 2022.

Abstract

Generative adversarial network (GAN)-guided visual quality evaluation means scoring GAN-propagated portraits to quantify the degree of visual distortions. In general, there are very few image- and character-evaluation algorithms generated by GAN, and the algorithm's athletic ability is not capable. In this article, we proposed a novel image ranking algorithm based on the nearest neighbor algorithm. It can obtain automatic and extrinsic evaluation of GAN procreate images using an efficient evaluation technique. First, with the support of the artificial neural network, the boundaries of the variety images are extracted to form a homogeneous portrait candidate pool, based on which the comparison of product copies is restricted. Subsequently, with the support of the -nearest neighbors algorithm, from the unified similarity candidate pool, we extract the most similar concept of K-Emperor to the generated portrait and calculate the portrait quality score accordingly. Finally, the property of generative similarity that produced by the GAN models are trained on a variety of classical datasets. Comprehensive experimental results have shown that our algorithm substantially improves the efficiency and accuracy of the natural evaluation of pictures generated by GAN. The calculated metric is only 1/9-1/28 compared to the other methods. Meanwhile, the objective evaluation of the GAN and human consistency has increased by more than 80% in line with human visual perception.

摘要

生成对抗网络(GAN)引导的视觉质量评估是指对GAN生成的人像进行评分,以量化视觉失真程度。一般来说,由GAN生成的图像和人物评估算法非常少,且该算法的性能不佳。在本文中,我们提出了一种基于最近邻算法的新型图像排序算法。它可以使用高效的评估技术对GAN生成的图像进行自动和客观的评估。首先,在人工神经网络的支持下,提取各种图像的边界以形成一个同质的人像候选池,在此基础上限制产品副本的比较。随后,在K近邻算法的支持下,从统一的相似性候选池中,提取与生成的人像最相似的K个概念,并据此计算人像质量得分。最后,在各种经典数据集上对GAN模型产生的生成相似性属性进行训练。综合实验结果表明,我们的算法显著提高了对GAN生成图片进行自然评估的效率和准确性。与其他方法相比,计算出的指标仅为其1/9 - 1/28。同时,GAN的客观评估与人类的一致性符合人类视觉感知,提高了80%以上。

相似文献

1
Neighboring Algorithm for Visual Semantic Analysis toward GAN-Generated Pictures.面向GAN生成图片的视觉语义分析的邻域算法
Appl Bionics Biomech. 2022 Sep 23;2022:2188152. doi: 10.1155/2022/2188152. eCollection 2022.
3
Quality Prediction on Deep Generative Images.深度生成图像的质量预测
IEEE Trans Image Process. 2020 Apr 16. doi: 10.1109/TIP.2020.2987180.
8
BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.基于BigGAN的人脑活动自然图像贝叶斯重建
Neuroscience. 2020 Sep 15;444:92-105. doi: 10.1016/j.neuroscience.2020.07.040. Epub 2020 Jul 28.

本文引用的文献

1
Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.利用大数据学习增强图像的无参考质量评估模型。
IEEE Trans Neural Netw Learn Syst. 2018 Apr;29(4):1301-1313. doi: 10.1109/TNNLS.2017.2649101. Epub 2017 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验