Suppr超能文献

多性状基因组预测提高了豌豆种子矿物质含量选择的准确性。

Multi-trait genomic prediction improves selection accuracy for enhancing seed mineral concentrations in pea.

作者信息

Atanda Sikiru Adeniyi, Steffes Jenna, Lan Yang, Al Bari Md Abdullah, Kim Jeong-Hwa, Morales Mario, Johnson Josephine P, Saludares Rica, Worral Hannah, Piche Lisa, Ross Andrew, Grusak Mike, Coyne Clarice, McGee Rebecca, Rao Jiajia, Bandillo Nonoy

机构信息

Dep. of Plant Sciences, North Dakota State Univ., Fargo, ND, 58108-6050, USA.

North Central Research Extension Center, NDSU, 5400 Hwy. 83, South Minot, ND, 58701, USA.

出版信息

Plant Genome. 2022 Dec;15(4):e20260. doi: 10.1002/tpg2.20260. Epub 2022 Oct 3.

Abstract

Multi-trait genomic selection (MT-GS) has the potential to improve predictive ability by maximizing the use of information across related genotypes and genetically correlated traits. In this study, we extended the use of sparse phenotyping method into the MT-GS framework by split testing of entries to maximize borrowing of information across genotypes and predict missing phenotypes for targeted traits without additional phenotyping expenditure. Using 300 advanced breeding lines from North Dakota State University (NDSU) pulse breeding program and ∼200 USDA accessions that were evaluated for 10 nutritional traits, our results show that the proposed sparse phenotyping aided MT-GS can further improve predictive ability by >12% across traits compared with univariate (UNI) genomic selection. The proposed strategy departed from the previous reports that weak genetic correlation is a limitation to the advantage of MT-GS over UNI genomic selection, which was evident in the partially balanced phenotyping-enabled MT-GS. Our results point to heritability and genetic correlation between traits as possible metrics to optimize and further improve the estimation of model parameters, and ultimately, prediction performance. Overall, our study offers a new approach to optimize the prediction performance using the MT-GS and further highlight strategy to maximize the efficiency of GS in a plant breeding program. The sparse-testing-aided MT-GS proposed in this study can be further extended to multi-environment, multi-trait GS to improve prediction performance and further reduce the cost of phenotyping and time-consuming data collection process.

摘要

多性状基因组选择(MT-GS)有潜力通过最大限度地利用相关基因型和遗传相关性状的信息来提高预测能力。在本研究中,我们通过对条目进行分割测试,将稀疏表型分析方法的应用扩展到MT-GS框架中,以最大限度地跨基因型借用信息,并在不增加表型分析费用的情况下预测目标性状的缺失表型。利用来自北达科他州立大学(NDSU)豆类育种计划的300个先进育种系和大约200份美国农业部种质资源,对其10个营养性状进行了评估,我们的结果表明,与单变量(UNI)基因组选择相比,所提出的稀疏表型分析辅助MT-GS能够在各性状上进一步提高>12%的预测能力。所提出的策略与之前的报道不同,之前的报道认为弱遗传相关性是MT-GS相对于UNI基因组选择优势的一个限制因素,这在部分平衡表型分析的MT-GS中很明显。我们的结果表明,性状之间的遗传力和遗传相关性可能作为优化和进一步改进模型参数估计以及最终预测性能的指标。总体而言,我们的研究提供了一种利用MT-GS优化预测性能的新方法,并进一步突出了在植物育种计划中最大化基因组选择效率的策略。本研究中提出的稀疏测试辅助MT-GS可以进一步扩展到多环境、多性状基因组选择,以提高预测性能,并进一步降低表型分析成本和耗时的数据收集过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验