Mbebi Alain J, Mercado Facundo, Hobby David, Tong Hao, Nikoloski Zoran
Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Brandenburg, Germany.
Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Brandenburg, Germany.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf211.
Traits in any organism are not independent, but show considerable integration, observed in a form of couplings and trade-offs. Therefore, improvement in one trait may affect other traits, often in undesired direction. To account for this problem, crop breeding increasingly relies on multi-trait genomic prediction (MT-GP) approaches that leverage the availability of genetic markers from different populations along with advances in high-throughput precision phenotyping. While significant progress has been made to jointly model multiple traits using a variety of statistical and machine learning approaches, there is no systematic comparison of advantages and shortcomings of the existing classes of MT-GP models. Here, we fill this knowledge gap by first classifying the existing MT-GP models and briefly summarizing their general principles, modeling assumptions, and potential limitations. We then perform an extensive comparative analysis with 10 traits measured in an Oryza sativa diversity panel using cross-validation scenarios relevant in breeding practice. Finally, we discuss directions that can enable the building of next generation MT-GP models in addressing pressing challenges in crop breeding.
任何生物体中的性状都不是独立的,而是表现出相当程度的整合,以耦合和权衡的形式呈现。因此,一个性状的改善可能会影响其他性状,而且往往是朝着不理想的方向。为了解决这个问题,作物育种越来越依赖多性状基因组预测(MT-GP)方法,这些方法利用来自不同群体的遗传标记以及高通量精准表型分析技术的进步。虽然在使用各种统计和机器学习方法对多个性状进行联合建模方面已经取得了重大进展,但对于现有MT-GP模型类别的优缺点尚无系统比较。在此,我们通过首先对现有MT-GP模型进行分类,并简要总结其一般原理、建模假设和潜在局限性,填补这一知识空白。然后,我们使用与育种实践相关的交叉验证方案,对水稻多样性群体中测量的10个性状进行了广泛的比较分析。最后,我们讨论了在应对作物育种中的紧迫挑战时,能够构建下一代MT-GP模型的方向。