文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于金字塔三重深度特征生成技术的乳腺超声图像 BI-RADS 自动分类。

Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images.

机构信息

Department of Radiology, Adiyaman Training and Research Hospital, Adiyaman, Turkey.

Department of Biomedical Imaging, Universiti Malaya Research Imaging Centre, Faculty of Medicine, Universiti Malaya, 59100 Kuala Lumpur, Malaysia.

出版信息

Med Eng Phys. 2022 Oct;108:103895. doi: 10.1016/j.medengphy.2022.103895. Epub 2022 Sep 15.


DOI:10.1016/j.medengphy.2022.103895
PMID:36195364
Abstract

Ultrasound (US) is an important imaging modality used to assess breast lesions for malignant features. In the past decade, many machine learning models have been developed for automated discrimination of breast cancer versus normal on US images, but few have classified the images based on the Breast Imaging Reporting and Data System (BI-RADS) classes. This work aimed to develop a model for classifying US breast lesions using a BI-RADS classification framework with a new multi-class US image dataset. We proposed a deep model that combined a novel pyramid triple deep feature generator (PTDFG) with transfer learning based on three pre-trained networks for creating deep features. Bilinear interpolation was applied to decompose the input image into four images of successively smaller dimensions, constituting a four-level pyramid for downstream feature generation with the pre-trained networks. Neighborhood component analysis was applied to the generated features to select each network's 1,000 most informative features, which were fed to support vector machine classifier for automated classification using a ten-fold cross-validation strategy. Our proposed model was validated using a new US image dataset containing 1,038 images divided into eight BI-RADS classes and histopathological results. We defined three classification schemes: Case 1 involved the classification of all images into eight categories; Case 2, classification of breast US images into five BI-RADS classes; and Case 3, classification of BI-RADS 4 lesions into benign versus malignant classes. Our PTDFG-based transfer learning model attained accuracy rates of 79.29%, 80.42%, and 88.67% for Case 1, Case 2, and Case 3, respectively.

摘要

超声(US)是一种重要的成像方式,用于评估乳腺病变的恶性特征。在过去的十年中,已经开发了许多机器学习模型,用于自动区分乳腺 US 图像中的乳腺癌与正常组织,但很少有模型根据乳腺影像报告和数据系统(BI-RADS)分类对图像进行分类。本研究旨在使用 BI-RADS 分类框架和新的多类 US 图像数据集开发一种用于分类 US 乳腺病变的模型。我们提出了一种深度模型,该模型结合了新颖的金字塔三重深度特征生成器(PTDFG)和基于三个预训练网络的迁移学习,用于创建深度特征。双线性插值应用于将输入图像分解为四个尺寸逐渐减小的图像,构成用于下游特征生成的四级金字塔,其中包括三个预训练网络。邻域成分分析应用于生成的特征,以选择每个网络的 1000 个最具信息量的特征,这些特征被馈送到支持向量机分类器中,使用十折交叉验证策略进行自动分类。我们使用包含 1038 张图像的新 US 图像数据集和组织病理学结果验证了我们提出的模型。我们定义了三种分类方案:方案 1 涉及将所有图像分为八个类别;方案 2 将乳腺 US 图像分为五个 BI-RADS 类别;方案 3 将 BI-RADS 4 病变分为良性和恶性类别。我们的基于 PTDFG 的迁移学习模型在方案 1、方案 2 和方案 3 中的准确率分别为 79.29%、80.42%和 88.67%。

相似文献

[1]
Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images.

Med Eng Phys. 2022-10

[2]
Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making.

Eur Radiol. 2019-3-29

[3]
Application of Deep Learning to Reduce the Rate of Malignancy Among BI-RADS 4A Breast Lesions Based on Ultrasonography.

Ultrasound Med Biol. 2022-11

[4]
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network.

Eur Radiol. 2022-7

[5]
Artificial intelligence, BI-RADS evaluation and morphometry: A novel combination to diagnose breast cancer using ultrasonography, results from multi-center cohorts.

Eur J Radiol. 2022-12

[6]
Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks.

Med Phys. 2024-6

[7]
The uncertainty of boundary can improve the classification accuracy of BI-RADS 4A ultrasound image.

Med Phys. 2022-5

[8]
Segmentation-based BI-RADS ensemble classification of breast tumours in ultrasound images.

Int J Med Inform. 2024-9

[9]
Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images.

Biomed Eng Online. 2019-1-24

[10]
Reproducibility of quantitative high-throughput BI-RADS features extracted from ultrasound images of breast cancer.

Med Phys. 2017-5-16

引用本文的文献

[1]
Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging.

Sci Rep. 2025-4-24

[2]
Machine Learning Model for Predicting Risk Factors of Prolonged Length of Hospital Stay in Patients with Aortic Dissection: a Retrospective Clinical Study.

J Cardiovasc Transl Res. 2025-2

[3]
Deep Learning for Describing Breast Ultrasound Images with BI-RADS Terms.

J Imaging Inform Med. 2024-12

[4]
A Novel Fuzzy Relative-Position-Coding Transformer for Breast Cancer Diagnosis Using Ultrasonography.

Healthcare (Basel). 2023-9-13

[5]
5G-Based Telerobotic Ultrasound System Improves Access to Breast Examination in Rural and Remote Areas: A Prospective and Two-Scenario Study.

Diagnostics (Basel). 2023-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索