Suppr超能文献

从乳腺癌超声图像中提取的定量高通量 BI-RADS 特征的可重复性。

Reproducibility of quantitative high-throughput BI-RADS features extracted from ultrasound images of breast cancer.

机构信息

Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.

Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200433, China.

出版信息

Med Phys. 2017 Jul;44(7):3676-3685. doi: 10.1002/mp.12275. Epub 2017 May 16.

Abstract

PURPOSE

Digital Breast Imaging Reporting and Data System (BI-RADS) features extracted from ultrasound images are essential in computer-aided diagnosis, prediction, and prognosis of breast cancer. This study focuses on the reproducibility of quantitative high-throughput BI-RADS features in the presence of variations due to different segmentation results, various ultrasound machine models, and multiple ultrasound machine settings.

METHODS

Dataset 1 consists of 399 patients with invasive breast cancer and is used as the training set to measure the reproducibility of features, while dataset 2 consists of 138 other patients and is a validation set used to evaluate the diagnosis performances of the final reproducible features. Four hundred and sixty high-throughput BI-RADS features are designed and quantized according to BI-RADS lexicon. Concordance Correlation Coefficient (CCC) and Deviation (Dev) are used to assess the effect of the segmentation methods and Between-class Distance (BD) is used to study the influences of the machine models. In addition, the features jointly shared by two methodologies are further investigated on their effects with multiple machine settings. Subsequently, the absolute value of Pearson Correlation Coefficient (R ) is applied for redundancy elimination. Finally, the features that are reproducible and not redundant are preserved as the stable feature set. A 10-fold Support Vector Machine (SVM) classifier is employed to verify the diagnostic ability.

RESULTS

One hundred and fifty-three features were found to have high reproducibility (CCC > 0.9 & Dev < 0.1) within the manual and automatic segmentation. Three hundred and thirty-nine features were stable (BD < 0.2) at different machine models. Two feature sets shared the same 102 features, in which nine features were highly sensitive to the machine settings. Forty-six features were finally preserved after redundancy elimination. For the validation in dataset 2, the area under curve (AUC) of the 10-fold SVM classifier was 0.915.

CONCLUSIONS

Three factors, segmentation results, machine models, and machine settings may affect the reproducibility of high-throughput BI-RADS features to various degrees. Our 46 reproducible features were robust to these factors and were capable of distinguishing benign and malignant breast tumors.

摘要

目的

从超声图像中提取的数字乳腺成像报告和数据系统(BI-RADS)特征是计算机辅助诊断、预测和乳腺癌预后的关键。本研究关注的是在由于不同的分割结果、不同的超声机器模型和多种超声机器设置导致的变化的情况下,定量高通量 BI-RADS 特征的可重复性。

方法

数据集 1 由 399 名浸润性乳腺癌患者组成,用于作为训练集来测量特征的可重复性,而数据集 2 由 138 名其他患者组成,用于评估最终可重复特征的诊断性能的验证集。根据 BI-RADS 词典设计并量化了 460 个高通量 BI-RADS 特征。一致性相关系数(CCC)和偏差(Dev)用于评估分割方法的效果,而类间距离(BD)用于研究机器模型的影响。此外,进一步研究了两种方法共同具有的特征,研究了它们在多种机器设置下的效果。随后,应用皮尔逊相关系数(R)的绝对值进行冗余消除。最后,保留可重复且不冗余的特征作为稳定特征集。采用 10 折支持向量机(SVM)分类器进行验证。

结果

在手动和自动分割中,有 153 个特征被发现具有高可重复性(CCC>0.9 且 Dev<0.1)。在不同的机器模型中,有 339 个特征是稳定的(BD<0.2)。两个特征集共享了相同的 102 个特征,其中 9 个特征对机器设置高度敏感。经过冗余消除后,最终保留了 46 个特征。在数据集 2 的验证中,10 折 SVM 分类器的曲线下面积(AUC)为 0.915。

结论

分割结果、机器模型和机器设置这三个因素可能会在不同程度上影响高通量 BI-RADS 特征的可重复性。我们的 46 个可重复特征对这些因素具有鲁棒性,能够区分良性和恶性乳腺肿瘤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验