一种用于乳腺癌超声诊断的新型模糊相对位置编码变压器。

A Novel Fuzzy Relative-Position-Coding Transformer for Breast Cancer Diagnosis Using Ultrasonography.

作者信息

Guo Yanhui, Jiang Ruquan, Gu Xin, Cheng Heng-Da, Garg Harish

机构信息

Department of Computer Science, University of Illinois, Springfield, IL 62703, USA.

Department of Pediatrics, Xinxiang Medical University, Xinxiang 453003, China.

出版信息

Healthcare (Basel). 2023 Sep 13;11(18):2530. doi: 10.3390/healthcare11182530.

Abstract

Breast cancer is a leading cause of death in women worldwide, and early detection is crucial for successful treatment. Computer-aided diagnosis (CAD) systems have been developed to assist doctors in identifying breast cancer on ultrasound images. In this paper, we propose a novel fuzzy relative-position-coding (FRPC) Transformer to classify breast ultrasound (BUS) images for breast cancer diagnosis. The proposed FRPC Transformer utilizes the self-attention mechanism of Transformer networks combined with fuzzy relative-position-coding to capture global and local features of the BUS images. The performance of the proposed method is evaluated on one benchmark dataset and compared with those obtained by existing Transformer approaches using various metrics. The experimental outcomes distinctly establish the superiority of the proposed method in achieving elevated levels of accuracy, sensitivity, specificity, and F1 score (all at 90.52%), as well as a heightened area under the receiver operating characteristic (ROC) curve (0.91), surpassing those attained by the original Transformer model (at 89.54%, 89.54%, 89.54%, and 0.89, respectively). Overall, the proposed FRPC Transformer is a promising approach for breast cancer diagnosis. It has potential applications in clinical practice and can contribute to the early detection of breast cancer.

摘要

乳腺癌是全球女性死亡的主要原因之一,早期检测对于成功治疗至关重要。已开发出计算机辅助诊断(CAD)系统来协助医生在超声图像上识别乳腺癌。在本文中,我们提出了一种新颖的模糊相对位置编码(FRPC)Transformer,用于对乳腺超声(BUS)图像进行分类以诊断乳腺癌。所提出的FRPC Transformer利用Transformer网络的自注意力机制并结合模糊相对位置编码来捕获BUS图像的全局和局部特征。在一个基准数据集上评估了所提方法的性能,并使用各种指标与现有Transformer方法获得的性能进行了比较。实验结果明确表明,所提方法在实现更高水平的准确率、灵敏度、特异性和F1分数(均为90.52%)以及更高的受试者工作特征(ROC)曲线下面积(0.91)方面具有优越性,超过了原始Transformer模型所达到的水平(分别为89.54%、89.54%、89.54%和0.89)。总体而言,所提出的FRPC Transformer是一种有前途的乳腺癌诊断方法。它在临床实践中有潜在应用,并有助于乳腺癌的早期检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca8c/10531413/a6fe49fae0de/healthcare-11-02530-g001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索