Kumar Aakriti, Benjamin Aaron S, Heathcote Andrew, Steyvers Mark
University of California, Irvine, CA, USA.
University of Illinois at Urbana-Champaign, Champaign, IL, USA.
NPJ Sci Learn. 2022 Oct 4;7(1):24. doi: 10.1038/s41539-022-00142-x.
Practice in real-world settings exhibits many idiosyncracies of scheduling and duration that can only be roughly approximated by laboratory research. Here we investigate 39,157 individuals' performance on two cognitive games on the Lumosity platform over a span of 5 years. The large-scale nature of the data allows us to observe highly varied lengths of uncontrolled interruptions to practice and offers a unique view of learning in naturalistic settings. We enlist a suite of models that grow in the complexity of the mechanisms they postulate and conclude that long-term naturalistic learning is best described with a combination of long-term skill and task-set preparedness. We focus additionally on the nature and speed of relearning after breaks in practice and conclude that those components must operate interactively to produce the rapid relearning that is evident even at exceptionally long delays (over 2 years). Naturalistic learning over long time spans provides a strong test for the robustness of theoretical accounts of learning, and should be more broadly used in the learning sciences.
在现实世界环境中的练习展现出许多时间安排和持续时间方面的特质,而实验室研究只能大致对其进行模拟。在此,我们调查了39157名个体在5年时间跨度内在Lumosity平台上两款认知游戏中的表现。数据的大规模特性使我们能够观察到练习过程中不受控制的中断时长具有高度多样性,并为自然环境中的学习提供了独特视角。我们运用了一系列模型,这些模型所假定的机制复杂性不断增加,得出的结论是,长期自然学习最好用长期技能和任务集准备相结合来描述。我们还特别关注练习中断后的再学习的性质和速度,得出的结论是,这些组成部分必须相互作用,才能产生即使在超长延迟(超过2年)情况下也很明显的快速再学习。长时间跨度的自然学习为学习理论解释的稳健性提供了有力检验,并且应该在学习科学中得到更广泛的应用。