Suppr超能文献

参与和表现对学习功能的共同贡献:在大规模数据集下探究年龄的影响。

The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets.

机构信息

Department of Cognitive Sciences, University of California, Irvine, 2316 Social & Behavioral Sciences Gateway Building, Irvine, CA, 92697-5100, USA.

Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA.

出版信息

Behav Res Methods. 2019 Aug;51(4):1531-1543. doi: 10.3758/s13428-018-1128-2.

Abstract

Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance-that is, the learning function-and participation. Using a data set of 54 million gameplays from the online brain training site Lumosity, we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.

摘要

来自在线培训和游戏平台的大规模数据集为更广泛和更精确的人类学习研究提供了机会,这是在实验室中通常无法实现的。然而,由于人们自己选择参与,因此使用这些数据集进行的任何学习研究都必须同时对表现(即学习功能)和参与进行建模。我们使用来自在线大脑训练网站 Lumosity 的 5400 万次游戏数据进行了研究,结果表明,参与者的学习功能受到与年龄相关的参与政策的系统偏差的影响。表现较差的老年参与者比表现较好的老年参与者更有可能退出,而年轻参与者则没有这种影响。利用这一知识,我们可以推断出可以纠正这些与年龄相关的辍学差异的群体学习功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验