Suppr超能文献

复杂网络中的相似性和互补性的结构测度。

Structural measures of similarity and complementarity in complex networks.

机构信息

Robert Zajonc Institute for Social Studies, University of Warsaw, Stawki 5/7, 00-183, Warsaw, Poland.

Faculty of Psychology, University of Warsaw, Stawki 5/7, 00-183, Warsaw, Poland.

出版信息

Sci Rep. 2022 Oct 4;12(1):16580. doi: 10.1038/s41598-022-20710-w.

Abstract

The principle of similarity, or homophily, is often used to explain patterns observed in complex networks such as transitivity and the abundance of triangles (3-cycles). However, many phenomena from division of labor to protein-protein interactions (PPI) are driven by complementarity (differences and synergy). Here we show that the principle of complementarity is linked to the abundance of quadrangles (4-cycles) and dense bipartite-like subgraphs. We link both principles to their characteristic motifs and introduce two families of coefficients of: (1) structural similarity, which generalize local clustering and closure coefficients and capture the full spectrum of similarity-driven structures; (2) structural complementarity, defined analogously but based on quadrangles instead of triangles. Using multiple social and biological networks, we demonstrate that the coefficients capture structural properties related to meaningful domain-specific phenomena. We show that they allow distinguishing between different kinds of social relations as well as measuring an increasing structural diversity of PPI networks across the tree of life. Our results indicate that some types of relations are better explained by complementarity than homophily, and may be useful for improving existing link prediction methods. We also introduce a Python package implementing efficient algorithms for calculating the proposed coefficients.

摘要

相似性原则,或同质性原则,通常用于解释复杂网络中的模式,如传递性和三角形(3 循环)的丰富度。然而,许多现象,从劳动分工到蛋白质-蛋白质相互作用(PPI),都是由互补性(差异和协同作用)驱动的。在这里,我们表明互补性原则与四边形(4 循环)和密集的二分相似子图的丰富度有关。我们将这两个原则与其特征模式联系起来,并引入了两类系数:(1)结构相似性,它推广了局部聚类和闭合系数,并捕捉了相似性驱动结构的全部范围;(2)结构互补性,定义类似,但基于四边形而不是三角形。使用多个社会和生物网络,我们证明了这些系数可以捕捉到与有意义的特定领域现象相关的结构特性。我们表明,它们可以区分不同类型的社会关系,并衡量生命之树中 PPI 网络的结构多样性不断增加。我们的结果表明,某些类型的关系用互补性来解释比同质性更好,并且可能有助于改进现有的链接预测方法。我们还介绍了一个 Python 包,该包实现了用于计算所提出系数的高效算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59ab/9532398/df4337d9f66c/41598_2022_20710_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验