Suppr超能文献

用于高效光伏的甲脒铯钙钛矿解耦工程。

Decoupling engineering of formamidinium-cesium perovskites for efficient photovoltaics.

作者信息

Chen Haoran, Wang Yong, Fan Yingping, Chen Yuetian, Miao Yanfeng, Qin Zhixiao, Wang Xingtao, Liu Xiaomin, Zhu Kaicheng, Gao Feng, Zhao Yixin

机构信息

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden.

出版信息

Natl Sci Rev. 2022 Jul 5;9(10):nwac127. doi: 10.1093/nsr/nwac127. eCollection 2022 Oct.

Abstract

Although pure formamidinium iodide perovskite (FAPbI) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI. However, state-of-the-art formamidinium-cesium (FA-Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI, limited by the different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible, highly efficient and stable solar cells based on FA Cs PbI ( = 0.05-0.16) films with uniform composition distribution in the nanoscale and low defect densities. We also revealed a new stabilization mechanism for Cs doping to stabilize FAPbI, i.e. the incorporation of Cs into FAPbI significantly reduces the electron-phonon coupling strength to suppress ionic migration, thereby improving the stability of FA-Cs-based devices.

摘要

尽管纯碘化甲脒钙钛矿(FAPbI)具有光伏的最佳带隙,但其较差的相稳定性限制了器件的长期运行稳定性。一种提高其相稳定性的有前景的方法是将铯掺入FAPbI中。然而,与FAPbI相比,目前最先进的甲脒铯(FA-Cs)碘化物钙钛矿的效率要低得多,这受到甲脒和铯不同结晶动力学的限制,导致组成均匀性差和陷阱密度高。我们通过一种顺序掺入铯的方法,开发了一种甲脒和铯结晶解耦过程的新策略。据此,我们基于纳米级组成分布均匀且缺陷密度低的FA Cs PbI( = 0.05 - 0.16)薄膜,获得了高度可重现、高效且稳定的太阳能电池。我们还揭示了一种用于铯掺杂以稳定FAPbI的新稳定机制,即铯掺入FAPbI中显著降低了电子 - 声子耦合强度以抑制离子迁移,从而提高了基于FA-Cs的器件的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a78b/9522398/0e1b35372404/nwac127fig1.jpg

相似文献

1
Decoupling engineering of formamidinium-cesium perovskites for efficient photovoltaics.
Natl Sci Rev. 2022 Jul 5;9(10):nwac127. doi: 10.1093/nsr/nwac127. eCollection 2022 Oct.
2
Localized incorporation of cesium ions to improve formamidinium lead iodide layers in perovskite solar cells.
RSC Adv. 2018 Jul 18;8(45):25645-25652. doi: 10.1039/c8ra04742a. eCollection 2018 Jul 16.
4
Zwitterion-Functionalized SnO Substrate Induced Sequential Deposition of Black-Phase FAPbI with Rearranged PbI Residue.
Adv Mater. 2022 Aug;34(32):e2203143. doi: 10.1002/adma.202203143. Epub 2022 Jul 11.
5
Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives.
ChemSusChem. 2016 Dec 8;9(23):3288-3297. doi: 10.1002/cssc.201601027. Epub 2016 Oct 26.
9
Elimination of Yellow Phase: An Effective Method to Achieve High Quality HC(NH ) PbI -based Perovskite Films.
ChemSusChem. 2020 Mar 9;13(5):956-963. doi: 10.1002/cssc.201903216. Epub 2020 Jan 30.
10
Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites.
ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15292-15304. doi: 10.1021/acsami.1c01547. Epub 2021 Mar 25.

引用本文的文献

1
Machine Learning-Driven Insights for Phase-Stable FA Cs Pb(I Br ) Perovskites in Tandem Solar Cells.
JACS Au. 2025 Mar 13;5(4):1771-1780. doi: 10.1021/jacsau.5c00033. eCollection 2025 Apr 28.
2
Photoexcitation-induced passivation of SnO thin film for efficient perovskite solar cells.
Natl Sci Rev. 2023 Sep 13;10(11):nwad245. doi: 10.1093/nsr/nwad245. eCollection 2023 Nov.

本文引用的文献

1
Efficient and Stable CsPbI Inorganic Perovskite Photovoltaics Enabled by Crystal Secondary Growth.
Adv Mater. 2021 Nov;33(44):e2103688. doi: 10.1002/adma.202103688. Epub 2021 Sep 13.
2
MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing.
Research (Wash D C). 2021 Aug 18;2021:9765106. doi: 10.34133/2021/9765106. eCollection 2021.
3
Pseudo-halide anion engineering for α-FAPbI perovskite solar cells.
Nature. 2021 Apr;592(7854):381-385. doi: 10.1038/s41586-021-03406-5. Epub 2021 Apr 5.
4
Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity.
Science. 2021 Mar 26;371(6536):1359-1364. doi: 10.1126/science.abf7652.
5
Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes.
Nat Commun. 2021 Jan 13;12(1):361. doi: 10.1038/s41467-020-20582-6.
6
Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells.
Science. 2020 Oct 2;370(6512):108-112. doi: 10.1126/science.abc4417.
8
Thermodynamically stabilized β-CsPbI-based perovskite solar cells with efficiencies >18.
Science. 2019 Aug 9;365(6453):591-595. doi: 10.1126/science.aav8680.
9
Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture.
Science. 2018 Oct 26;362(6413):449-453. doi: 10.1126/science.aat3583. Epub 2018 Oct 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验