Suppr超能文献

用于高效钙钛矿太阳能电池的光激发诱导SnO薄膜钝化

Photoexcitation-induced passivation of SnO thin film for efficient perovskite solar cells.

作者信息

Chai Nianyao, Chen Xiangyu, Zeng Zhongle, Yu Ruohan, Yue Yunfan, Mai Bo, Wu Jinsong, Mai Liqiang, Cheng Yi-Bing, Wang Xuewen

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, China.

National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan528000, China.

出版信息

Natl Sci Rev. 2023 Sep 13;10(11):nwad245. doi: 10.1093/nsr/nwad245. eCollection 2023 Nov.

Abstract

A high-quality tin oxide electron transport layer (ETL) is a key common factor to achieve high-performance perovskite solar cells (PSCs). However, the conventional annealing technique to prepare high-quality ETLs by continuous heating under near-equilibrium conditions requires high temperatures and a long fabrication time. Alternatively, we present a non-equilibrium, photoexcitation-induced passivation technique that uses multiple ultrashort laser pulses. The ultrafast photoexcitation and following electron-electron and electron-phonon scattering processes induce ultrafast annealing to efficiently passivate surface and bulk defects, and improve the crystallinity of SnO, resulting in suppressing the carrier recombination and facilitating the charge transport between the ETL and perovskite interface. By rapidly scanning the laser beam, the annealing time is reduced to several minutes, which is much more efficient compared with conventional thermal annealing. To demonstrate the university and scalability of this technique, typical antisolvent and antisolvent-free processed hybrid organic-inorganic metal halide PSCs have been fabricated and achieved the power conversion efficiency (PCE) of 24.14% and 22.75% respectively, and a 12-square-centimeter module antisolvent-free processed perovskite solar module achieves a PCE of 20.26%, with significantly enhanced performance both in PCE and stability. This study establishes a new approach towards the commercialization of efficient low-temperature manufacturing of PSCs.

摘要

高质量的氧化锡电子传输层(ETL)是实现高性能钙钛矿太阳能电池(PSC)的关键共同因素。然而,通过在近平衡条件下连续加热来制备高质量ETL的传统退火技术需要高温和较长的制造时间。相比之下,我们提出了一种非平衡的、光激发诱导的钝化技术,该技术使用多个超短激光脉冲。超快光激发以及随后的电子-电子和电子-声子散射过程会引发超快退火,从而有效地钝化表面和体缺陷,并提高SnO的结晶度,进而抑制载流子复合并促进ETL与钙钛矿界面之间的电荷传输。通过快速扫描激光束,退火时间可缩短至几分钟,与传统热退火相比效率更高。为了证明该技术的通用性和可扩展性,已制备了典型的反溶剂法和无反溶剂法加工的有机-无机金属卤化物混合PSC,其功率转换效率(PCE)分别达到了24.14%和22.75%,并且一个12平方厘米的无反溶剂法加工的钙钛矿太阳能模块的PCE达到了20.26%,在PCE和稳定性方面的性能均有显著提高。这项研究为PSC高效低温制造的商业化建立了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6138/10583279/0413062d43ea/nwad245fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验