Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.
Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany.
Glycobiology. 2022 Oct 31;32(11):933-948. doi: 10.1093/glycob/cwac037.
Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.
许多蛋白质通过一种称为糖基磷脂酰肌醇 (GPI) 锚的独特糖脂家族锚定在真核生物的细胞表面。这些糖脂也存在于没有共价结合蛋白质的情况下,特别是在原生动物寄生虫的细胞表面,它们密集存在。GPI 和 GPI 锚定蛋白参与多种细胞过程,如信号转导、细胞黏附、蛋白质运输以及疟疾、弓形虫病、锥虫病和朊病毒病等的发病机制。所有 GPI 都具有共同的保守聚糖核心,该核心以细胞依赖性方式修饰,并带有额外的侧聚糖或磷酸乙醇胺残基。在这里,我们使用原子分子动力学模拟并进行了系统研究,以评估不同侧链插入脂质双层时 GPI 的结构特性。我们的结果表明,GPI 相对于膜表面呈现出一种翻转向下的取向,并将侧链残基暴露在溶剂中。这一发现与实验结果一致,实验表明侧链残基作为巨噬细胞识别 GPI 和诱导 GPI-聚糖特异性免疫反应的活性表位的作用。通过将寄生虫 GPI 附着到绿色荧光蛋白上来研究蛋白质-GPI 相互作用。观察到 GPI 倾向于在膜表面倾斜,并将附着的蛋白质向下拉靠近膜,从而促进蛋白质、GPI 和脂质双层之间的相互接触。该模型可有效地评估 GPI 和 GPI 锚定蛋白与膜的相互作用,并可扩展到研究其他寄生虫 GPI 和蛋白质,并开发基于 GPI 的免疫预防来治疗传染病。