Sevcsik Eva, Brameshuber Mario, Fölser Martin, Weghuber Julian, Honigmann Alf, Schütz Gerhard J
Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria.
School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels 4600, Austria.
Nat Commun. 2015 Apr 21;6:6969. doi: 10.1038/ncomms7969.
The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.
质膜中蛋白质和脂质的组织方式一直是长期争论的主题。有人提出具有更高脂质链有序性的膜筏介导蛋白质相互作用,但迄今为止尚未直接观察到。在这里,我们使用蛋白质微图案化结合单分子追踪来检验当前模型:我们在活细胞质膜中直接重新排列脂质锚定的筏蛋白(糖基磷脂酰肌醇(GPI)锚定的mGFP),并测量对局部膜环境的影响。有趣的是,这种处理既不会引发有序膜相的形成,也不会在微图案化区域内导致任何纳米级有序结构域的富集。相反,我们发现固定化的mGFP-GPI对其他膜成分的扩散起到惰性障碍物的作用,而不会在超出其物理尺寸的距离上影响它们的膜环境。我们的结果表明,相分离不是质膜中蛋白质组织的基本要素。