Suppr超能文献

开发和验证用于初级保健中疑似急性冠状动脉综合征患者的预测规则:一项横断面研究。

Development and validation of a prediction rule for patients suspected of acute coronary syndrome in primary care: a cross-sectional study.

机构信息

Department of General Practice, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands

Department of General Practice, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands.

出版信息

BMJ Open. 2022 Oct 5;12(10):e064402. doi: 10.1136/bmjopen-2022-064402.

Abstract

OBJECTIVE

To develop and validate a symptom-based prediction rule for early recognition of acute coronary syndrome (ACS) in patients with acute chest discomfort who call out-of-hours services for primary care (OHS-PC).

DESIGN

Cross-sectional study. A diagnostic prediction rule was developed with multivariable regression analyses. All models were validated with internal-external cross validation within seven OHS-PC locations. Both age and sex were analysed as statistical interaction terms, applying for age non-linear effects.

SETTING

Seven OHS-PC in the Netherlands.

PARTICIPANTS

2192 patients who called OHS-PC for acute chest discomfort (pain, pressure, tightness or discomfort) between 2014 and 2017. Backed up recordings of telephone triage conversations were analysed.

PRIMARY AND SECONDARY OUTCOMES MEASURES

Diagnosis of ACS retrieved from the patient's medical records in general practice, including hospital specialists discharge letters. Performance of the prediction rules was calculated with the c-statistic and the final model was chosen based on net benefit analyses.

RESULTS

Among the 2192 patients who called the OHS-PC with acute chest discomfort, 8.3% females and 15.3% males had an ACS. The final diagnostic model included seven predictors (sex, age, acute onset of chest pain lasting less than 12 hours, a pressing/heavy character of the pain, radiation of the pain, sweating and calling at night). It had an adjusted c-statistic of 0.77 (95% CI 0.74 to 0.79) with good calibration.

CONCLUSION

The final prediction model for ACS has good discrimination and calibration and shows promise for replacing the existing telephone triage rules for patients with acute chest discomfort in general practice and OHS-PC.

TRIAL REGISTRATION NUMBER

NTR7331.

摘要

目的

为了在因急性胸痛拨打初级保健非工作时间服务(OHS-PC)的患者中,开发并验证一种基于症状的预测规则,以早期识别急性冠状动脉综合征(ACS)。

设计

横断面研究。使用多变量回归分析建立诊断预测规则。在七个 OHS-PC 地点内进行内部-外部交叉验证,对所有模型进行验证。分析年龄和性别作为统计交互项,应用于年龄非线性效应。

地点

荷兰七个 OHS-PC。

参与者

2014 年至 2017 年期间,因急性胸痛(疼痛、压迫感、紧绷感或不适)拨打 OHS-PC 的 2192 名患者。分析了电话分诊对话的备份录音。

主要和次要结局测量

从患者的全科医生病历中检索 ACS 的诊断,包括医院专家的出院信。使用 c 统计量计算预测规则的性能,并根据净效益分析选择最终模型。

结果

在因急性胸痛拨打 OHS-PC 的 2192 名患者中,8.3%为女性,15.3%为男性患有 ACS。最终的诊断模型包括七个预测因素(性别、年龄、胸痛急性发作持续时间少于 12 小时、疼痛有紧迫/沉重的特征、疼痛辐射、出汗和夜间呼叫)。它的调整后 c 统计量为 0.77(95%置信区间 0.74 至 0.79),具有良好的校准度。

结论

ACS 的最终预测模型具有良好的区分度和校准度,有望取代现有的针对普通实践和 OHS-PC 中急性胸痛患者的电话分诊规则。

试验注册

NTR7331。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eca/9535154/5b11b2000df0/bmjopen-2022-064402f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验