Suppr超能文献

早产儿中节能型呼吸异常检测

Energy-Efficient Respiratory Anomaly Detection in Premature Newborn Infants.

作者信息

Paul Ankita, Tajin Md Abu Saleh, Das Anup, Mongan William M, Dandekar Kapil R

机构信息

Department of Electrical and Computer Engineering, Drexel University College of Engineering, Philadelphia, PA 19104, USA.

Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA 19426, USA.

出版信息

Electronics (Basel). 2022 Mar;11(5). doi: 10.3390/electronics11050682. Epub 2022 Feb 23.

Abstract

Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant's body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18× lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy.

摘要

对早产儿的呼吸频率进行精确监测对于根据需要启动医疗干预至关重要。有线技术可能具有侵入性且会给患者带来干扰。我们提出了一种用于早产儿的基于深度学习的可穿戴监测系统,该系统使用从贴在婴儿身体上的无创可穿戴腹部贴片无线收集的信号来预测呼吸停止。我们提出了一个五阶段的设计流程,包括数据收集与标注、特征缩放、带有超参数调整的深度学习模型选择、模型训练与验证以及模型测试与部署。所使用的模型是一种具有一个卷积层、一个池化层和三个全连接层的一维卷积神经网络(1DCNN)架构,分类准确率达到97.15%。为了解决可穿戴处理的能量限制问题,我们探索了几种量化技术,并分析了它们在呼吸分类任务中的性能和能耗。结果表明,能量占用和模型存储开销有所减少,但分类准确率大幅下降,这意味着量化和其他模型压缩技术并非可穿戴设备上呼吸分类问题的最佳解决方案。为了在降低能耗的同时提高准确率,我们提出了一种基于新型脉冲神经网络(SNN)的呼吸分类解决方案,该方案可在事件驱动的神经形态硬件平台上实现。为此,我们提出了一种方法,将我们经过训练的基线1DCNN的模拟操作转换为等效的脉冲操作。我们使用转换后的SNN的参数进行设计空间探索,以生成具有不同准确率和能量占用的推理解决方案。我们选择了一种解决方案,与基线1DCNN模型相比,其准确率为93.33%,能量降低了18倍。此外,所提出的SNN解决方案与量化模型具有相似的准确率,但能量降低了4倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/778e/9531842/fc01be59de09/nihms-1794640-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验