Stichting IMEC Nederland, High Tech Campus 31, Eindhoven 5656 AE, The Netherlands; Drexel University, Philadelphia, PA 19104, USA.
Stichting IMEC Nederland, High Tech Campus 31, Eindhoven 5656 AE, The Netherlands.
Neural Netw. 2018 Mar;99:134-147. doi: 10.1016/j.neunet.2017.12.015. Epub 2018 Jan 12.
Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine learning technique to estimate heart-rate from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery-life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects is considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.
心率估计是现代可穿戴设备的基本功能。本文提出了一种利用可穿戴设备采集的心电图(ECG)数据进行心率估计的机器学习技术。我们的方法的新颖之处在于:(1)直接将 ECG 信号的时空特性编码为尖峰序列,并使用该序列来激发液体状态机计算模型中递归连接的尖峰神经元;(2)一种新颖的学习算法;(3)一种基于模糊 c-均值聚类的智能设计的无监督读出方法,该方法对从一组神经元(液体状态)中响应的尖峰进行聚类,使用粒子群优化选择这些神经元。我们的方法与现有工作的不同之处在于,它直接从 ECG 信号学习(允许个性化),而不需要昂贵的数据注释。此外,我们的方法可以很容易地在基于尖峰的最新神经形态系统上实现,提供高精度,同时显著降低能耗,从而延长可穿戴设备的电池寿命。我们使用 CARLsim 进行了验证,CARLsim 是一种 GPU 加速的尖峰神经网络模拟器,它对具有尖峰时间依赖性可塑性(STDP)和自适应性缩放的 Izhikevich 尖峰神经元进行建模。考虑了来自内部临床试验和公共 ECG 数据库的一系列受试者。结果表明,对于有和没有心脏不规则的受试者,在心率估计方面都具有很高的准确性和低能耗,这表明该方法具有很强的潜力,可以集成到未来的可穿戴设备中。