Suppr超能文献

GraphSKT:用于领域自适应病变检测的图引导结构化知识转移

GraphSKT: Graph-Guided Structured Knowledge Transfer for Domain Adaptive Lesion Detection.

作者信息

Chen Chaoqi, Wang Jiexiang, Pan Junwen, Bian Cheng, Zhang Zhicheng

出版信息

IEEE Trans Med Imaging. 2023 Feb;42(2):507-518. doi: 10.1109/TMI.2022.3212784. Epub 2023 Feb 2.

Abstract

Adversarial-based adaptation has dominated the area of domain adaptive detection over the past few years. Despite their general efficacy for various tasks, the learned representations may not capture the intrinsic topological structures of the whole images and thus are vulnerable to distributional shifts especially in real-world applications, such as geometric distortions across imaging devices in medical images. In this case, forcefully matching data distributions across domains cannot ensure precise knowledge transfer and are prone to result in the negative transfer. In this paper, we explore the problem of domain adaptive lesion detection from the perspective of relational reasoning, and propose a Graph-Structured Knowledge Transfer (GraphSKT) framework to perform hierarchical reasoning by modeling both the intra- and inter-domain topological structures. To be specific, we utilize cross-domain correspondence to mine meaningful foreground regions for representing graph nodes and explicitly endow each node with contextual information. Then, the intra- and inter-domain graphs are built on the top of instance-level features to achieve a high-level understanding of the lesion and whole medical image, and transfer the structured knowledge from source to target domains. The contextual and semantic information is propagated through graph nodes methodically, enhancing the expressive power of learned features for the lesion detection tasks. Extensive experiments on two types of challenging datasets demonstrate that the proposed GraphSKT significantly outperforms the state-of-the-art approaches for detection of polyps in colonoscopy images and of mass in mammographic images.

摘要

在过去几年中,基于对抗的自适应方法在域自适应检测领域占据主导地位。尽管它们在各种任务中具有普遍的有效性,但所学习的表示可能无法捕捉整个图像的内在拓扑结构,因此容易受到分布变化的影响,特别是在实际应用中,例如医学图像中跨成像设备的几何失真。在这种情况下,强行匹配跨域的数据分布并不能确保精确的知识转移,并且容易导致负迁移。在本文中,我们从关系推理的角度探讨域自适应病变检测问题,并提出一种图结构知识转移(GraphSKT)框架,通过对域内和域间拓扑结构进行建模来执行分层推理。具体而言,我们利用跨域对应来挖掘有意义的前景区域以表示图节点,并明确地为每个节点赋予上下文信息。然后,在实例级特征之上构建域内和域间图,以实现对病变和整个医学图像的高级理解,并将结构化知识从源域转移到目标域。上下文和语义信息通过图节点有系统地传播,增强了所学习特征对病变检测任务的表达能力。在两种具有挑战性的数据集上进行的大量实验表明,所提出的GraphSKT在结肠镜检查图像中的息肉检测和乳腺钼靶图像中的肿块检测方面明显优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验