Xue Dongmei, Ma Haichuan, Li Li, Liu Dong, Xiong Zhiwei
IEEE Trans Med Imaging. 2023 Mar;42(3):606-618. doi: 10.1109/TMI.2022.3212780. Epub 2023 Mar 2.
Volumetric image compression has become an urgent task to effectively transmit and store images produced in biological research and clinical practice. At present, the most commonly used volumetric image compression methods are based on wavelet transform, such as JP3D. However, JP3D employs an ideal, separable, global, and fixed wavelet basis to convert input images from pixel domain to frequency domain, which seriously limits its performance. In this paper, we first design a 3-D trained wavelet-like transform to enable signal-dependent and non-separable transform. Then, an affine wavelet basis is introduced to capture the various local correlations in different regions of volumetric images. Furthermore, we embed the proposed wavelet-like transform to an end-to-end compression framework called aiWave to enable an adaptive compression scheme for various datasets. Last but not least, we introduce the weight sharing strategies of the affine wavelet-like transform according to the volumetric data characteristics in the axial direction to reduce the number of parameters. The experimental results show that: 1) when cooperating our trained 3-D affine wavelet-like transform with a simple factorized entropy coding module, aiWave performs better than JP3D and is comparable in terms of encoding and decoding complexities; 2) when adding a context module to remove signal redundancy further, aiWave can achieve a much better performance than HEVC.
体积图像压缩已成为有效传输和存储生物研究与临床实践中产生的图像的紧迫任务。目前,最常用的体积图像压缩方法基于小波变换,如JP3D。然而,JP3D采用理想、可分离、全局且固定的小波基将输入图像从像素域转换到频域,这严重限制了其性能。在本文中,我们首先设计一种三维训练的类小波变换以实现信号依赖且不可分离的变换。然后,引入仿射小波基来捕捉体积图像不同区域的各种局部相关性。此外,我们将所提出的类小波变换嵌入到一个名为aiWave的端到端压缩框架中,以实现针对各种数据集的自适应压缩方案。最后但同样重要的是,我们根据轴向的体积数据特征引入仿射类小波变换的权重共享策略以减少参数数量。实验结果表明:1)当将我们训练的三维仿射类小波变换与一个简单的因式分解熵编码模块配合使用时,aiWave的性能优于JP3D,并且在编码和解码复杂度方面相当;2)当添加一个上下文模块以进一步去除信号冗余时,aiWave可以实现比HEVC更好的性能。