Suppr超能文献

一个跨越小鼠寿命的突触蛋白寿命的大脑图谱。

A brain atlas of synapse protein lifetime across the mouse lifespan.

机构信息

Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.

Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK.

出版信息

Neuron. 2022 Dec 21;110(24):4057-4073.e8. doi: 10.1016/j.neuron.2022.09.009. Epub 2022 Oct 5.

Abstract

The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.

摘要

蛋白质在突触中的寿命对于其信号传递、维持和重塑以及记忆持续时间非常重要。我们在整个小鼠大脑和寿命范围内以单突触分辨率量化了 PSD95 的寿命,PSD95 是兴奋性突触中丰富的突触后蛋白,生成了蛋白质寿命突触组图谱。兴奋性突触的 PSD95 寿命范围很广,从数小时到数月不等,在树突、神经元和脑区具有不同的空间分布。具有短寿命蛋白质的突触在年幼动物和控制本能行为的脑区中更为丰富,而具有长寿命蛋白质的突触则在发育过程中积累,在负责储存记忆的皮层和 CA1 中更为丰富,并在老年时优先保留。在自闭症和精神分裂症的小鼠模型中,大脑中的突触蛋白寿命会全面增加。蛋白质寿命为突触多样性增添了一个新的层面,并丰富了大脑发育、衰老和疾病的主流概念。

相似文献

1
A brain atlas of synapse protein lifetime across the mouse lifespan.
Neuron. 2022 Dec 21;110(24):4057-4073.e8. doi: 10.1016/j.neuron.2022.09.009. Epub 2022 Oct 5.
2
Synapse diversity and synaptome architecture in human genetic disorders.
Hum Mol Genet. 2019 Nov 21;28(R2):R219-R225. doi: 10.1093/hmg/ddz178.
3
A single-synapse resolution survey of PSD95-positive synapses in twenty human brain regions.
Eur J Neurosci. 2021 Oct;54(8):6864-6881. doi: 10.1111/ejn.14846. Epub 2020 Jun 25.
5
Architecture of the Mouse Brain Synaptome.
Neuron. 2018 Aug 22;99(4):781-799.e10. doi: 10.1016/j.neuron.2018.07.007. Epub 2018 Aug 2.
6
Sleep maintains excitatory synapse diversity in the cortex and hippocampus.
Curr Biol. 2024 Aug 19;34(16):3836-3843.e5. doi: 10.1016/j.cub.2024.07.032. Epub 2024 Aug 2.
7
A toolbox for ablating excitatory and inhibitory synapses.
Elife. 2025 Apr 29;13:RP103757. doi: 10.7554/eLife.103757.
8
A brainwide atlas of synapses across the mouse life span.
Science. 2020 Jul 17;369(6501):270-275. doi: 10.1126/science.aba3163. Epub 2020 Jun 11.
9
A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis.
J Neurosci. 2011 Apr 6;31(14):5414-25. doi: 10.1523/JNEUROSCI.2456-10.2011.

引用本文的文献

1
Molecular recording of cellular protein kinase activity with chemical labeling.
Nat Chem Biol. 2025 Jul 10. doi: 10.1038/s41589-025-01949-6.
2
Chemical tags and beyond: Live-cell protein labeling technologies for modern optical imaging.
Smart Mol. 2023 Aug 28;1(2):e20230002. doi: 10.1002/smo.20230002. eCollection 2023 Sep.
3
Endogenous SNAP-Tagging of Munc13‑1 for Monitoring Synapse Nanoarchitecture.
JACS Au. 2025 May 23;5(6):2475-2490. doi: 10.1021/jacsau.4c00946. eCollection 2025 Jun 23.
4
Dysregulated RNA-binding proteins and alternative splicing: Emerging roles in autism spectrum disorder.
Mol Cells. 2025 Jun 3;48(8):100237. doi: 10.1016/j.mocell.2025.100237.
5
In vivo pulse-chase in Caenorhabditis elegans reveals intestinal histone turnover changes upon starvation.
J Biol Chem. 2025 May 27;301(7):110299. doi: 10.1016/j.jbc.2025.110299.
6
Regulation of synaptic function and lipid metabolism.
Neural Regen Res. 2026 Mar 1;21(3):1037-1057. doi: 10.4103/NRR.NRR-D-24-01412. Epub 2025 Apr 29.
8
Combining nanobody labeling with STED microscopy reveals input-specific and layer-specific organization of neocortical synapses.
PLoS Biol. 2025 Apr 4;23(4):e3002649. doi: 10.1371/journal.pbio.3002649. eCollection 2025 Apr.
9
EPSILON: a method for pulse-chase labeling to probe synaptic AMPAR exocytosis during memory formation.
Nat Neurosci. 2025 May;28(5):1099-1107. doi: 10.1038/s41593-025-01922-5. Epub 2025 Mar 31.
10
DELTA: a method for brain-wide measurement of synaptic protein turnover reveals localized plasticity during learning.
Nat Neurosci. 2025 May;28(5):1089-1098. doi: 10.1038/s41593-025-01923-4. Epub 2025 Mar 31.

本文引用的文献

1
Rewiring of the ubiquitinated proteome determines ageing in C. elegans.
Nature. 2021 Aug;596(7871):285-290. doi: 10.1038/s41586-021-03781-z. Epub 2021 Jul 28.
2
Representational drift in primary olfactory cortex.
Nature. 2021 Jun;594(7864):541-546. doi: 10.1038/s41586-021-03628-7. Epub 2021 Jun 9.
3
Cellular proteostasis decline in human senescence.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31902-31913. doi: 10.1073/pnas.2018138117. Epub 2020 Nov 30.
6
A brainwide atlas of synapses across the mouse life span.
Science. 2020 Jul 17;369(6501):270-275. doi: 10.1126/science.aba3163. Epub 2020 Jun 11.
8
Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies.
Chembiochem. 2020 Jul 16;21(14):1935-1946. doi: 10.1002/cbic.202000037. Epub 2020 Apr 2.
9
Monosomes actively translate synaptic mRNAs in neuronal processes.
Science. 2020 Jan 31;367(6477). doi: 10.1126/science.aay4991.
10
Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets.
Nat Commun. 2019 Oct 31;10(1):4958. doi: 10.1038/s41467-019-13005-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验