Suppr超能文献

利用 HaloTag 和 SNAP-Tag 技术可视化和操作生物过程。

Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies.

机构信息

Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA 16802, USA.

出版信息

Chembiochem. 2020 Jul 16;21(14):1935-1946. doi: 10.1002/cbic.202000037. Epub 2020 Apr 2.

Abstract

Visualizing and manipulating the behavior of proteins is crucial to understanding the physiology of the cell. Methods of biorthogonal protein labeling are important tools to attain this goal. In this review, we discuss advances in probe technology specific for self-labeling protein tags, focusing mainly on the application of HaloTag and SNAP-tag systems. We describe the latest developments in small-molecule probes that enable fluorogenic (no wash) imaging and super-resolution fluorescence microscopy. In addition, we cover several methodologies that enable the perturbation or manipulation of protein behavior and function towards the control of biological pathways. Thus, current technical advances in the HaloTag and SNAP-tag systems means that they are becoming powerful tools to enable the visualization and manipulation of biological processes, providing invaluable scientific insights that are difficult to obtain by traditional methodologies. As the multiplex of self-labeling protein tag systems continues to be developed and expanded, the utility of these protein tags will allow researchers to address previously inaccessible questions at the forefront of biology.

摘要

可视化和操纵蛋白质的行为对于理解细胞的生理学至关重要。生物正交蛋白质标记方法是实现这一目标的重要工具。在这篇综述中,我们讨论了专门用于自标记蛋白质标签的探针技术的进展,主要集中在 HaloTag 和 SNAP-tag 系统的应用上。我们描述了可用于荧光(无需洗涤)成像和超分辨率荧光显微镜的小分子探针的最新进展。此外,我们还介绍了几种能够干扰或操纵蛋白质行为和功能以控制生物途径的方法。因此,HaloTag 和 SNAP-tag 系统的当前技术进步意味着它们正在成为可视化和操纵生物过程的强大工具,为生物学前沿提供了难以通过传统方法获得的宝贵科学见解。随着自标记蛋白质标签系统的多路复用不断发展和扩展,这些蛋白质标签的实用性将使研究人员能够解决生物学前沿领域以前无法解决的问题。

相似文献

1
Visualizing and Manipulating Biological Processes by Using HaloTag and SNAP-Tag Technologies.
Chembiochem. 2020 Jul 16;21(14):1935-1946. doi: 10.1002/cbic.202000037. Epub 2020 Apr 2.
2
Synthesis of Janelia Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments.
Methods Mol Biol. 2017;1663:179-188. doi: 10.1007/978-1-4939-7265-4_15.
4
Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging.
Chembiochem. 2011 Sep 19;12(14):2217-26. doi: 10.1002/cbic.201100173. Epub 2011 Jul 26.
5
Advances in Synthetic Fluorescent Probe Labeling for Live-Cell Imaging in Plants.
Plant Cell Physiol. 2021 Nov 10;62(8):1259-1268. doi: 10.1093/pcp/pcab104.
6
Development of an effective protein-labeling system based on smart fluorogenic probes.
J Biol Inorg Chem. 2019 Jun;24(4):443-455. doi: 10.1007/s00775-019-01669-y. Epub 2019 May 31.
7
A Fluorogenic AggTag Method Based on Halo- and SNAP-Tags to Simultaneously Detect Aggregation of Two Proteins in Live Cells.
Chembiochem. 2019 Apr 15;20(8):1078-1087. doi: 10.1002/cbic.201800782. Epub 2019 Mar 12.
8
HaloTag-Based Reporters for Fluorescence Imaging and Biosensing.
Chembiochem. 2023 Jun 15;24(12):e202300022. doi: 10.1002/cbic.202300022. Epub 2023 May 23.
9
Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags.
Cell Chem Biol. 2019 Apr 18;26(4):584-592.e6. doi: 10.1016/j.chembiol.2019.01.003. Epub 2019 Feb 7.
10
Chemical tags for labeling proteins inside living cells.
Acc Chem Res. 2011 Sep 20;44(9):784-92. doi: 10.1021/ar200099f. Epub 2011 Aug 31.

引用本文的文献

1
SNAPpa: A Photoactivatable SNAP-tag for the Spatiotemporal Control of Protein Labeling.
JACS Au. 2025 Jul 17;5(7):3589-3602. doi: 10.1021/jacsau.5c00603. eCollection 2025 Jul 28.
2
Thioether editing generally increases the photostability of rhodamine dyes on self-labeling tags.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2426354122. doi: 10.1073/pnas.2426354122. Epub 2025 Jul 18.
3
Utilizing small molecules to probe and harness the proteome by pooled protein tagging with ligandable domains.
Front Pharmacol. 2025 Jun 23;16:1593844. doi: 10.3389/fphar.2025.1593844. eCollection 2025.
4
Developing HaloTag and SNAP-Tag Chemical Inducers of Dimerization to Probe Receptor Oligomerization and Downstream Signaling.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202506830. doi: 10.1002/anie.202506830. Epub 2025 Jul 24.
6
In vivo pulse-chase in Caenorhabditis elegans reveals intestinal histone turnover changes upon starvation.
J Biol Chem. 2025 May 27;301(7):110299. doi: 10.1016/j.jbc.2025.110299.
7
Fluorescent labeling of proteins in vitro and in vivo using encoded peptide tags.
J Biol Chem. 2025 May 14;301(6):110229. doi: 10.1016/j.jbc.2025.110229.
9
A comprehensive toolkit for protein localization and functional analysis in trypanosomatids.
Open Biol. 2025 Apr;15(4):240361. doi: 10.1098/rsob.240361. Epub 2025 Apr 2.
10
Harnessing the Power of Plasmonics for and Biosensing.
ACS Photonics. 2025 Feb 17;12(3):1259-1275. doi: 10.1021/acsphotonics.4c01657. eCollection 2025 Mar 19.

本文引用的文献

1
A General Strategy to Enhance Donor-Acceptor Molecules Using Solvent-Excluding Substituents.
Angew Chem Int Ed Engl. 2020 Mar 16;59(12):4785-4792. doi: 10.1002/anie.201915744. Epub 2020 Feb 3.
2
A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy.
Nat Chem. 2020 Feb;12(2):165-172. doi: 10.1038/s41557-019-0371-1. Epub 2019 Dec 2.
3
Fluorogen-Activating Proteins: Next-Generation Fluorescence Probes for Biological Research.
Bioconjug Chem. 2020 Jan 15;31(1):16-27. doi: 10.1021/acs.bioconjchem.9b00710. Epub 2019 Dec 13.
4
Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging.
ACS Cent Sci. 2019 Sep 25;5(9):1602-1613. doi: 10.1021/acscentsci.9b00676. Epub 2019 Sep 5.
5
Single-Atom Fluorescence Switch: A General Approach toward Visible-Light-Activated Dyes for Biological Imaging.
J Am Chem Soc. 2019 Sep 18;141(37):14699-14706. doi: 10.1021/jacs.9b06237. Epub 2019 Sep 9.
6
Development of photolabile protecting groups and their application to the optochemical control of cell signaling.
Curr Opin Struct Biol. 2019 Aug;57:164-175. doi: 10.1016/j.sbi.2019.03.028. Epub 2019 May 25.
7
Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags.
Cell Chem Biol. 2019 Apr 18;26(4):584-592.e6. doi: 10.1016/j.chembiol.2019.01.003. Epub 2019 Feb 7.
8
A Fluorogenic AggTag Method Based on Halo- and SNAP-Tags to Simultaneously Detect Aggregation of Two Proteins in Live Cells.
Chembiochem. 2019 Apr 15;20(8):1078-1087. doi: 10.1002/cbic.201800782. Epub 2019 Mar 12.
9
Triarylmethane Fluorophores Resistant to Oxidative Photobluing.
J Am Chem Soc. 2019 Jan 16;141(2):981-989. doi: 10.1021/jacs.8b11036. Epub 2019 Jan 2.
10
Quantification of Cellular Proteostasis in Live Cells by Fluorogenic Assay Using the AgHalo Sensor.
Curr Protoc Chem Biol. 2019 Mar;11(1):e58. doi: 10.1002/cpch.58. Epub 2018 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验