Suppr超能文献

使用机器学习开发和验证肺癌筛查模型:一项关于呼吸生物标志物的大规模、多中心研究。

Development and validation of a screening model for lung cancer using machine learning: A large-scale, multi-center study of biomarkers in breath.

作者信息

Li Jing, Zhang Yuwei, Chen Qing, Pan Zhenhua, Chen Jun, Sun Meixiu, Wang Junfeng, Li Yingxin, Ye Qing

机构信息

Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.

Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin, China.

出版信息

Front Oncol. 2022 Sep 20;12:975563. doi: 10.3389/fonc.2022.975563. eCollection 2022.

Abstract

OBJECTIVES

Lung cancer (LC) is the largest single cause of death from cancer worldwide, and the lack of effective screening methods for early detection currently results in unsatisfactory curative treatments. We herein aimed to use breath analysis, a noninvasive and very simple method, to identify and validate biomarkers in breath for the screening of lung cancer.

MATERIALS AND METHODS

We enrolled a total of 2308 participants from two centers for online breath analyses using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS). The derivation cohort included 1007 patients with primary LC and 1036 healthy controls, and the external validation cohort included 158 LC patients and 107 healthy controls. We used eXtreme Gradient Boosting (XGBoost) to create a panel of predictive features and derived a prediction model to identify LC. The optimal number of features was determined by the greatest area under the receiver-operating characteristic (ROC) curve (AUC).

RESULTS

Six features were defined as a breath-biomarkers panel for the detection of LC. In the training dataset, the model had an AUC of 0.963 (95% CI, 0.941-0.982), and a sensitivity of 87.1% and specificity of 93.5% at a positivity threshold of 0.5. Our model was tested on the independent validation dataset and achieved an AUC of 0.771 (0.718-0.823), and sensitivity of 67.7% and specificity of 73.0%.

CONCLUSION

Our results suggested that breath analysis may serve as a valid method in screening lung cancer in a borderline population prior to hospital visits. Although our breath-biomarker panel is noninvasive, quick, and simple to use, it will require further calibration and validation in a prospective study within a primary care setting.

摘要

目的

肺癌是全球癌症死亡的最大单一原因,目前缺乏有效的早期检测筛查方法,导致治疗效果不尽人意。我们旨在利用呼吸分析这一非侵入性且非常简单的方法,识别并验证呼吸中的生物标志物用于肺癌筛查。

材料与方法

我们从两个中心共招募了2308名参与者,使用质子转移反应飞行时间质谱仪(PTR-TOF-MS)进行在线呼吸分析。推导队列包括1007例原发性肺癌患者和1036名健康对照,外部验证队列包括158例肺癌患者和107名健康对照。我们使用极端梯度提升(XGBoost)创建一组预测特征,并推导一个预测模型来识别肺癌。通过在接受者操作特征(ROC)曲线下的最大面积(AUC)确定最佳特征数量。

结果

六个特征被定义为用于检测肺癌的呼吸生物标志物组。在训练数据集中,该模型的AUC为0.963(95%CI,0.941 - 0.982),在阳性阈值为0.5时,灵敏度为87.1%,特异性为93.5%。我们的模型在独立验证数据集上进行测试,AUC为0.771(0.718 - 0.823),灵敏度为67.7%,特异性为73.0%。

结论

我们的结果表明,呼吸分析可能是在边缘人群就诊前筛查肺癌的有效方法。尽管我们的呼吸生物标志物组是非侵入性的、快速且易于使用的,但仍需要在初级保健环境中的前瞻性研究中进行进一步校准和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c91b/9531270/61451c4e1052/fonc-12-975563-g001.jpg

相似文献

2
A combined screening study for evaluating the potential of exhaled acetone, isoprene, and nitric oxide as biomarkers of lung cancer.
RSC Adv. 2023 Oct 30;13(45):31835-31843. doi: 10.1039/d3ra04522f. eCollection 2023 Oct 26.
4
Noninvasive detection of lung cancer by analysis of exhaled breath.
BMC Cancer. 2009 Sep 29;9:348. doi: 10.1186/1471-2407-9-348.
5
Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer.
Cancers (Basel). 2021 Mar 21;13(6):1431. doi: 10.3390/cancers13061431.
8
Copy number variation in plasma as a tool for lung cancer prediction using Extreme Gradient Boosting (XGBoost) classifier.
Thorac Cancer. 2020 Jan;11(1):95-102. doi: 10.1111/1759-7714.13204. Epub 2019 Nov 6.
9
Prediction of lung cancer using volatile biomarkers in breath.
Cancer Biomark. 2007;3(2):95-109. doi: 10.3233/cbm-2007-3204.

引用本文的文献

1
Exhaled Breath Analysis in Lymphangioleiomyomatosis by Real-Time Proton Mass Spectrometry.
Int J Mol Sci. 2025 Jun 23;26(13):6005. doi: 10.3390/ijms26136005.
2
Advanced strategy for cancer detection based on volatile organic compounds in breath.
J Nanobiotechnology. 2025 Jul 1;23(1):468. doi: 10.1186/s12951-025-03526-4.
3
Emerging Biomarkers in Metabolomics: Advancements in Precision Health and Disease Diagnosis.
Int J Mol Sci. 2024 Dec 8;25(23):13190. doi: 10.3390/ijms252313190.
4
A combined screening study for evaluating the potential of exhaled acetone, isoprene, and nitric oxide as biomarkers of lung cancer.
RSC Adv. 2023 Oct 30;13(45):31835-31843. doi: 10.1039/d3ra04522f. eCollection 2023 Oct 26.

本文引用的文献

2
Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2105063118.
4
Overview: Lipid Metabolism in the Tumor Microenvironment.
Adv Exp Med Biol. 2021;1316:41-47. doi: 10.1007/978-981-33-6785-2_3.
5
Expanded Access to Lung Cancer Screening-Implementing Wisely to Optimize Health.
JAMA Netw Open. 2021 Mar 1;4(3):e210275. doi: 10.1001/jamanetworkopen.2021.0275.
6
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
7
Exhaled breath analysis in disease detection.
Clin Chim Acta. 2021 Apr;515:61-72. doi: 10.1016/j.cca.2020.12.036. Epub 2020 Dec 31.
8
Recognizing lung cancer using a homemade e-nose: A comprehensive study.
Comput Biol Med. 2020 May;120:103706. doi: 10.1016/j.compbiomed.2020.103706. Epub 2020 Mar 19.
10
Searching for selected VOCs in human breath samples as potential markers of lung cancer.
Lung Cancer. 2019 Sep;135:123-129. doi: 10.1016/j.lungcan.2019.02.012. Epub 2019 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验