Suppr超能文献

一种可扩展的贝叶斯功能全基因组关联研究方法,该方法考虑了多变量定量功能注释,并应用于阿尔茨海默病的研究。

A scalable Bayesian functional GWAS method accounting for multivariate quantitative functional annotations with applications for studying Alzheimer disease.

作者信息

Chen Junyu, Wang Lei, De Jager Philip L, Bennett David A, Buchman Aron S, Yang Jingjing

机构信息

Department of Epidemiology, Emory University School of Public Health, Atlanta, GA 30322, USA.

Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

HGG Adv. 2022 Sep 17;3(4):100143. doi: 10.1016/j.xhgg.2022.100143. eCollection 2022 Oct 13.

Abstract

Existing methods for integrating functional annotations in genome-wide association studies (GWASs) to fine-map and prioritize potential causal variants are limited to using non-overlapped categorical annotations or limited by the computation burden of modeling genome-wide variants. To overcome these limitations, we propose a scalable Bayesian functional GWAS method to account for multivariate quantitative functional annotations (BFGWAS_QUANT), accompanied by a scalable computation algorithm enabling joint modeling of genome-wide variants. Simulation studies validated the performance of BFGWAS_QUANT for accurately quantifying annotation enrichment and improving GWAS power. Applying BFGWAS_QUANT to study five Alzheimer disease (AD)-related phenotypes using individual-level GWAS data (n = ∼1,000), we found that histone modification annotations have higher enrichment than expression quantitative trait locus (eQTL) annotations for all considered phenotypes, with the highest enrichment in H3K27me3 (polycomb regression). We also found that -eQTLs in microglia had higher enrichment than eQTLs of bulk brain frontal cortex tissue for all considered phenotypes. A similar enrichment pattern was also identified using the International Genomics of Alzheimer's Project (IGAP) summary-level GWAS data of AD (n = ∼54,000). The strongest known risk allele was identified for all five phenotypes, and the locus was validated using the IGAP data. BFGWAS_QUANT fine-mapped 32 significant variants from 1,073 genome-wide significant variants in the IGAP data. We also demonstrated that the polygenic risk scores (PRSs) using effect size estimates by BFGWAS_QUANT had a similar prediction accuracy as other methods assuming a sparse causal model. Overall, BFGWAS_QUANT is a useful GWAS tool for quantifying annotation enrichment and prioritizing potential causal variants.

摘要

在全基因组关联研究(GWAS)中,现有的整合功能注释以精细定位潜在因果变异并对其进行优先级排序的方法,仅限于使用非重叠的分类注释,或者受到对全基因组变异进行建模的计算负担的限制。为了克服这些限制,我们提出了一种可扩展的贝叶斯功能GWAS方法,以考虑多变量定量功能注释(BFGWAS_QUANT),并伴有一种可扩展的计算算法,能够对全基因组变异进行联合建模。模拟研究验证了BFGWAS_QUANT在准确量化注释富集和提高GWAS功效方面的性能。将BFGWAS_QUANT应用于使用个体水平的GWAS数据(n = 约1000)研究五种阿尔茨海默病(AD)相关表型,我们发现对于所有考虑的表型,组蛋白修饰注释的富集程度高于表达定量性状位点(eQTL)注释,其中H3K27me3(多梳抑制)的富集程度最高。我们还发现,对于所有考虑的表型,小胶质细胞中的-eQTL比大脑额叶皮质组织整体的eQTL具有更高的富集程度。使用阿尔茨海默病国际基因组计划(IGAP)的AD汇总水平GWAS数据(n = 约54000)也确定了类似的富集模式。为所有五种表型确定了最强的已知风险等位基因,并使用IGAP数据对该位点进行了验证。BFGWAS_QUANT在IGAP数据中从1073个全基因组显著变异中精细定位了32个显著变异。我们还证明,使用BFGWAS_QUANT的效应大小估计的多基因风险评分(PRS)与其他假设稀疏因果模型的方法具有相似的预测准确性。总体而言,BFGWAS_QUANT是一种用于量化注释富集和对潜在因果变异进行优先级排序的有用GWAS工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fbf/9530673/35adad67b634/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验