Suppr超能文献

Funmap:整合高维功能注释以改进精细定位。

Funmap: integrating high-dimensional functional annotations to improve fine-mapping.

作者信息

Li Yuekai, Xiao Jiashun, Ming Jingsi, Zeng Yicheng, Cai Mingxuan

机构信息

Department of Biostatistics, City University of Hong Kong, Hong Kong, China.

Shenzhen International Center for Industrial and Applied Mathematics, Shenzhen Research Institute of Big Data, Shenzhen 518172, China.

出版信息

Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btaf017.

Abstract

MOTIVATION

Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of genome-wide association study risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.

RESULTS

In this study, we propose a unified method to integrate high-dimensional functional annotations with fine-mapping (Funmap). Funmap can effectively improve the power of fine-mapping by borrowing information from hundreds of functional annotations. Meanwhile, it relates the annotation to the causal probability with a random effects model that avoids the over-fitting issue, thereby producing a well-controlled false positive rate. Paired with a fast algorithm, Funmap enables scalable integration of a large number of annotations to facilitate prioritizing multiple causal single nucleotide polymorphisms. Our comprehensive simulations across a wide range of annotation relevance settings demonstrate that Funmap is the only method that produces well-calibrated false discovery rate under the setting of high-dimensional annotations while achieving better or comparable power gains as compared to existing methods. By integrating genome-wide association studies of 4 lipid traits with 187 functional annotations, Funmap consistently identified more variants that can be replicated in an independent cohort, achieving 15.5%-26.2% improvement over the runner-up in terms of replication rate.

AVAILABILITY AND IMPLEMENTATION

The Funmap software and all analysis code are available at https://github.com/LeeHITsz/Funmap.

摘要

动机

精细定位旨在通过考虑全基因组关联研究风险位点的连锁不平衡,对复杂性状潜在的因果变异进行优先级排序。功能注释资源的不断扩展可作为辅助证据,以提高精细定位的效能。然而,现有的精细定位方法在整合大量注释时往往会产生许多假阳性结果。

结果

在本研究中,我们提出了一种将高维功能注释与精细定位相结合的统一方法(Funmap)。Funmap可以通过从数百个功能注释中借用信息,有效地提高精细定位的效能。同时,它使用随机效应模型将注释与因果概率联系起来,避免了过拟合问题,从而产生一个控制良好的假阳性率。结合快速算法,Funmap能够对大量注释进行可扩展的整合,以便于对多个因果单核苷酸多态性进行优先级排序。我们在广泛的注释相关性设置下进行的综合模拟表明,Funmap是唯一一种在高维注释设置下产生校准良好的错误发现率的方法,同时与现有方法相比,实现了更好或相当的效能提升。通过将4种脂质性状的全基因组关联研究与187个功能注释相结合,Funmap一致地鉴定出更多可在独立队列中复制的变异,在复制率方面比第二名提高了15.5%-26.2%。

可用性和实现方式

Funmap软件和所有分析代码可在https://github.com/LeeHITsz/Funmap获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6116/11769679/f1ececf74735/btaf017f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验