Lei Miao, Liao Haitao, Wang Shijia, Zhou Hang, Zhao Zhiling, Payne Gregory F, Qu Xue, Liu Changsheng
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD, 20742, USA.
Small. 2022 Dec;18(48):e2204837. doi: 10.1002/smll.202204837. Epub 2022 Oct 7.
Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro- and macro-structures. Here, a single-step electro-fabrication method to create a Janus porous film by the electrodeposition of the amino-polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub-ambient temperature (0-5 °C). Sub-ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self-assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro-fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine.
双面多孔生物材料正受到越来越多的关注,人们付出了巨大努力来开发能够调节微观和宏观结构的简单、快速且可扩展的方法。在此,报道了一种通过电沉积氨基多糖壳聚糖来制备双面多孔膜的单步电制造方法。具体而言,在亚环境温度(0 - 5°C)下进行电沉积时,会自发形成双面结构。亚环境温度电沉积实验表明:出现了双面微观结构(可能是由于负责自组装的分子间相互作用发生了细微变化);重要的微观结构特征(孔径、孔隙率和厚度)可通过条件进行调节;并且该方法易于扩展(与串行打印相比),能够产生具有双面的复杂管状结构。体外研究证明了各向异性的细胞引导作用,使用大鼠颅骨缺损模型的体内研究进一步证实了这种双面多孔膜对引导骨再生的有益特性。总之,这些结果进一步证明,电制造为用于再生医学应用的软物质可控功能结构提供了一个简单且可扩展的平台技术。