Suppr超能文献

声处理是一种将菲瑟酮封装到酿酒酵母细胞中的有效策略。

Sonoprocessing is an effective strategy to encapsulate fisetin into Saccharomyces cerevisiae cells.

机构信息

Chemical Engineering Department, Bioprocess Laboratory, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, Natal, RN, 59078-900, Brazil.

Laboratory of Bioactive Compounds, Chemical Engineering Department, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, Natal, RN, 59078-900, Brazil.

出版信息

Appl Microbiol Biotechnol. 2022 Nov;106(22):7461-7475. doi: 10.1007/s00253-022-12214-4. Epub 2022 Oct 8.

Abstract

The encapsulation of fisetin into S. cerevisiae cells through sonoporation coupled with drying is reported for the first time in the literature. To establish the best conditions to maximize the amount of internalized fisetin, the cell density (5-10% w/v), fisetin concentration (1-3 mg/mL), acoustic energy density (0-333.3 W/L), and drying method (freeze-drying and spray drying) were analyzed through a Box-Behnken experimental design (BBD) coupled with response surface methodology (RSM). Higher encapsulation efficiency (EE) was achieved with a cell density of 10% w/v, while fisetin concentration of 3 mg/mL favored the encapsulation yield (EY) and antioxidant activity (AA). Higher EE (67.7%), EY (25.7 mg/g), and AA (90%) were registered when an acoustic density of 333.3 W/L was used. Furthermore, both drying protocols promoted fisetin encapsulation, but through spray drying, the EE, EY, and AA were 11.5%, 11.1%, and 26.6% higher than via freeze-drying, respectively. This work proved that fully filled biocapsules were produced through sonoprocessing, and their morphology was influenced by the acoustic energy and drying process. Overall, these results open new perspectives for the application of sonoprocessing-assisted encapsulation, paving the way for developing innovative yeast-based delivery systems for lipophilic compounds such as fisetin. KEY POINTS: • Sonoprocessing improves the encapsulation of fisetin into S. cerevisiae cells • Spray drying promotes fisetin loading into yeasts' intracellular space and cavities • Fisetin binding with yeast extracellular agents are favored by freeze-drying.

摘要

首次在文献中报道了通过声穿孔结合干燥将非瑟酮封装到酿酒酵母细胞中的方法。为了确定最佳条件以最大限度地增加内化非瑟酮的量,通过 Box-Behnken 实验设计(BBD)结合响应面法(RSM)分析了细胞密度(5-10%w/v)、非瑟酮浓度(1-3mg/mL)、声能密度(0-333.3W/L)和干燥方法(冷冻干燥和喷雾干燥)。当细胞密度为 10%w/v 时,封装效率(EE)更高,而非瑟酮浓度为 3mg/mL 时有利于封装产率(EY)和抗氧化活性(AA)。当声能密度为 333.3W/L 时,EE(67.7%)、EY(25.7mg/g)和 AA(90%)的数值最高。此外,两种干燥方法都促进了非瑟酮的封装,但通过喷雾干燥,EE、EY 和 AA 分别比冷冻干燥高 11.5%、11.1%和 26.6%。这项工作证明了通过声处理可以生产完全填充的生物胶囊,其形态受到声能和干燥过程的影响。总的来说,这些结果为声处理辅助封装的应用开辟了新的前景,为开发基于酵母的新型脂溶性化合物(如非瑟酮)输送系统铺平了道路。 要点: • 声处理可提高非瑟酮在酿酒酵母细胞中的包封率 • 喷雾干燥促进非瑟酮进入酵母细胞内空间和腔室的负载 • 冷冻干燥有利于非瑟酮与酵母细胞外物质的结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验