Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.
Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
Biol Direct. 2022 Oct 7;17(1):27. doi: 10.1186/s13062-022-00339-5.
RNA-protein interactions are crucial for diverse biological processes. In prokaryotes, RNA-protein interactions enable adaptive immunity through CRISPR-Cas systems. These defence systems utilize CRISPR RNA (crRNA) templates acquired from past infections to destroy foreign genetic elements through crRNA-mediated nuclease activities of Cas proteins. Thanks to the programmability and specificity of CRISPR-Cas systems, CRISPR-based antimicrobials have the potential to be repurposed as new types of antibiotics. Unlike traditional antibiotics, these CRISPR-based antimicrobials can be designed to target specific bacteria and minimize detrimental effects on the human microbiome during antibacterial therapy. In this study, we explore the potential of CRISPR-based antimicrobials by optimizing the RNA-protein interactions of crRNAs and Cas13 proteins. CRISPR-Cas13 systems are unique as they degrade specific foreign RNAs using the crRNA template, which leads to non-specific RNase activities and cell cycle arrest. We show that a high proportion of the Cas13 systems have no colocalized CRISPR arrays, and the lack of direct association between crRNAs and Cas proteins may result in suboptimal RNA-protein interactions in the current tools. Here, we investigate the RNA-protein interactions of the Cas13-based systems by curating the validation dataset of Cas13 protein and CRISPR repeat pairs that are experimentally validated to interact, and the candidate dataset of CRISPR repeats that reside on the same genome as the currently known Cas13 proteins. To find optimal CRISPR-Cas13 interactions, we first validate the 3-D structure prediction of crRNAs based on their experimental structures. Next, we test a number of RNA-protein interaction programs to optimize the in silico docking of crRNAs with the Cas13 proteins. From this optimized pipeline, we find a number of candidate crRNAs that have comparable or better in silico docking with the Cas13 proteins of the current tools. This study fully automatizes the in silico optimization of RNA-protein interactions as an efficient preliminary step for designing effective CRISPR-Cas13-based antimicrobials.
RNA-蛋白质相互作用对于各种生物过程至关重要。在原核生物中,RNA-蛋白质相互作用通过 CRISPR-Cas 系统实现适应性免疫。这些防御系统利用来自过去感染的 CRISPR RNA (crRNA) 模板,通过 Cas 蛋白介导的 crRNA 依赖性核酸酶活性来破坏外来遗传元件。由于 CRISPR-Cas 系统的可编程性和特异性,基于 CRISPR 的抗菌剂有可能被重新用作新型抗生素。与传统抗生素不同,这些基于 CRISPR 的抗菌剂可以设计为靶向特定细菌,并在抗菌治疗期间最大限度地减少对人类微生物组的不利影响。在这项研究中,我们通过优化 crRNA 和 Cas13 蛋白的 RNA-蛋白质相互作用来探索基于 CRISPR 的抗菌剂的潜力。CRISPR-Cas13 系统是独特的,因为它们使用 crRNA 模板降解特定的外来 RNA,导致非特异性的核糖核酸酶活性和细胞周期停滞。我们表明,很大一部分 Cas13 系统没有共定位的 CRISPR 阵列,并且 crRNA 和 Cas 蛋白之间缺乏直接关联可能导致当前工具中的 RNA-蛋白质相互作用不理想。在这里,我们通过整理经实验验证相互作用的 Cas13 蛋白和 CRISPR 重复对的验证数据集以及与当前已知 Cas13 蛋白位于同一基因组上的 CRISPR 重复的候选数据集,研究 Cas13 基系统的 RNA-蛋白质相互作用。为了找到最佳的 CRISPR-Cas13 相互作用,我们首先基于实验结构验证 crRNA 的 3D 结构预测。接下来,我们测试了许多 RNA-蛋白质相互作用程序来优化 crRNA 与 Cas13 蛋白的计算机对接。从这个优化的管道中,我们找到了一些候选 crRNA,它们与当前工具的 Cas13 蛋白具有可比或更好的计算机对接。这项研究完全自动化了 RNA-蛋白质相互作用的计算机优化,作为设计有效基于 CRISPR-Cas13 的抗菌剂的有效初步步骤。