Suppr超能文献

应用一种基于生理的药代动力学模型内集成的泌乳模型算法来预测乳汁中的基本药物暴露量。

Prediction of basic drug exposure in milk using a lactation model algorithm integrated within a physiologically based pharmacokinetic model.

机构信息

Certara UK Limited (Simcyp Division), Sheffield, UK.

出版信息

Biopharm Drug Dispos. 2022 Oct;43(5):201-212. doi: 10.1002/bdd.2334. Epub 2022 Oct 17.

Abstract

Medication use during breastfeeding can be a matter of concern due to unintended infant exposure to drugs through breast milk. The available information relating to the safety of most medications is limited and may vary. More precise information is needed regarding the safety to the newborn or infants of the medications taken by the mother during breastfeeding. Physiologically based Pharmacokinetic Model (PBPK) approaches can be utilized to predict the drug exposure in the milk of breastfeeding women and can act as a supporting tool in the risk assessment of feeding infants. This study aims to assess the predictive performance of an integrated 'log transformed phase-distribution' lactation model within a PBPK platform. The model utilizes the physicochemical properties of four basic drugs, namely tramadol, venlafaxine, fluoxetine, and paroxetine, and analyses the milk compositions to predict the milk-to-plasma (M/P) ratio. The M/P prediction model was incorporated within the Simcyp Simulator V20 to predict the milk exposure and to estimate the likely infant dose for these drugs. The PBPK models adequately predicted the maternal plasma exposure, M/P ratio, and the infant daily dose to within two-fold of the clinically observed values for all four compounds. Integration of the lactation model within PBPK models facilitates the prediction of drug exposure in breast milk. The developed model can inform the design of lactation studies and assist with the neonatal risk assessment after maternal exposure to such environmental chemicals or basic drugs which diffuse passively into the milk.

摘要

在母乳喂养期间使用药物可能会引起关注,因为婴儿会通过母乳意外接触到药物。与大多数药物安全性相关的可用信息有限,并且可能会有所不同。需要更精确的信息来了解母亲在母乳喂养期间服用的药物对新生儿或婴儿的安全性。基于生理的药代动力学模型(PBPK)方法可用于预测哺乳期妇女乳汁中的药物暴露情况,并可作为评估母乳喂养婴儿风险的辅助工具。本研究旨在评估整合“对数转换相分布”哺乳期模型在 PBPK 平台中的预测性能。该模型利用四种基本药物(曲马多、文拉法辛、氟西汀和帕罗西汀)的物理化学特性,并分析乳汁成分以预测乳汁与血浆(M/P)比值。该 M/P 预测模型被纳入 Simcyp Simulator V20 中,以预测这些药物的乳汁暴露量,并估计婴儿的可能剂量。对于所有四种化合物,PBPK 模型均能充分预测母体血浆暴露量、M/P 比值和婴儿每日剂量,与临床观察值的倍数相差在两倍以内。将哺乳期模型整合到 PBPK 模型中有助于预测母乳中的药物暴露量。所开发的模型可以为哺乳期研究的设计提供信息,并在母亲接触此类环境化学物质或基本药物后对新生儿进行风险评估时提供帮助,这些物质会被动扩散到乳汁中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验