Kraig R P, Cooper A J
Can J Physiol Pharmacol. 1987 May;65(5):1099-104. doi: 10.1139/y87-172.
An alkaline, followed by an acid-going transient, characterizes acid-base changes in the interstitial space during spreading depression in a variety of brain structures. In rat, such changes are associated with a significant rise in brain lactate content. How brain proton buffers behave during spreading depression is unknown. Techniques to significantly improve the response time of gas permeable membrane semimicroelectrodes for carbon dioxide and ammonia are reported. Measurements with such electrodes, when coupled to measurements of hydrogen ion concentration (from microelectrodes), permit rapid changes to be determined in bicarbonate concentration or ammonia and ammonium ion concentration, respectively. Bicarbonate concentration fell from 30 +/- 1 (n = 16) to 14 +/- 1 mM (n = 16) during spreading depression. On the other hand, ammonia concentration rose from 2.3 +/- 0.1 to 4.4 +/- 0.3 microM (n = 17) while ammonium ion concentration rose from 116 +/- 11 (n = 17) to 382 +/- 30 microM (n = 17) during spreading depression. Bicarbonate changes probably reflect titration of brain bicarbonate stores by accumulated lactic acid. Similar physicochemical changes do not explain the rise in ammonia and ammonium ion concentrations. Instead, elevation of the latter can only result from an increase in ammonia content of the interstitial space.
在多种脑结构的扩散性抑制过程中,间质空间的酸碱变化特征为先是碱性变化,随后是酸性变化。在大鼠中,这种变化与脑乳酸含量的显著升高有关。目前尚不清楚在扩散性抑制过程中脑质子缓冲剂的行为。本文报道了显著提高用于检测二氧化碳和氨的透气膜半微电极响应时间的技术。使用这种电极进行测量,并结合氢离子浓度(来自微电极)的测量,分别可以快速测定碳酸氢盐浓度或氨及铵离子浓度的变化。在扩散性抑制过程中,碳酸氢盐浓度从30±1(n = 16)降至14±1 mM(n = 16)。另一方面,在扩散性抑制过程中,氨浓度从2.3±0.1升至4.4±0.3微摩尔(n = 17),而铵离子浓度从116±11(n = 17)升至382±30微摩尔(n = 17)。碳酸氢盐的变化可能反映了累积的乳酸对脑碳酸氢盐储备的滴定。类似的物理化学变化并不能解释氨和铵离子浓度的升高。相反,后者的升高只能是由于间质空间氨含量的增加所致。