Louis Hitler, Charlie Destiny E, Amodu Ismail O, Benjamin Innocent, Gber Terkumbur E, Agwamba Ernest C, Adeyinka Adedapo S
Computational and Bio-Simulation Research Group, University of Calabar, Calabar 540221, Nigeria.
Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria.
ACS Omega. 2022 Sep 19;7(39):35118-35135. doi: 10.1021/acsomega.2c04044. eCollection 2022 Oct 4.
Upon various investigations conducted in search for a nanosensor material with the best sensing performance, the need to explore these materials cannot be overemphasized as materials associated with best sensing attributes are of vast interest to researchers. Hence, there is a need to investigate the adsorption performances of various metal-doped fullerene surfaces: CAu, CHf, CHg, CIr, COs, CPt, CRe, and CW on thiourea [SC(NH)] molecule using first-principles density functional theory computation. Comparative adsorption study has been carried out on various adsorption models of four functionals, M06-2X, M062X-D3, PBE0-D3, and ωB97XD, and two double-hybrid (DH) functionals, DSDPBEP86 and PBE0DH, as reference at Gen/def2svp/LanL2DZ. The visual study of weak interactions such as quantum theory of atoms in molecule analysis and noncovalent interaction analysis has been invoked to ascertain these results, and hence we arrived at a conclusive scientific report. In all cases, the weak adsorption observed is best described as physisorption phenomena, and CHNS@CPt complex exhibits better sensing attributes than its studied counterparts in the interactions between thiourea molecule and transition metal-doped fullerene surfaces. Also, in the comparative adsorption study, DH density functionals show better performance in estimating the adsorption energies due to their reduced mean absolute deviation (MAD) and root-mean-square deviation (RMSD) values of (MAD = 1.0305, RMSD = 1.6277) and (MAD = 0.9965, RMSD = 1.6101) in DSDPBEP86 and PBE0DH, respectively.
在为寻找具有最佳传感性能的纳米传感器材料而进行的各种研究中,探索这些材料的必要性再怎么强调也不为过,因为具有最佳传感特性的材料是研究人员极为感兴趣的。因此,有必要使用第一性原理密度泛函理论计算来研究各种金属掺杂富勒烯表面:CAu、CHf、CHg、CIr、COs、CPt、CRe和CW对硫脲[SC(NH)]分子的吸附性能。在Gen/def2svp/LanL2DZ水平上,对四种泛函M06 - 2X、M062X - D3、PBE0 - D3和ωB97XD以及两种双杂化(DH)泛函DSDPBEP86和PBE0DH的各种吸附模型进行了比较吸附研究。已采用诸如分子中的原子量子理论分析和非共价相互作用分析等弱相互作用的可视化研究来确定这些结果,从而得出了一份确凿的科学报告。在所有情况下,观察到的弱吸附最好被描述为物理吸附现象,并且在硫脲分子与过渡金属掺杂富勒烯表面之间的相互作用中,CHNS@CPt配合物表现出比其研究的对应物更好的传感特性。此外,在比较吸附研究中,DH密度泛函在估计吸附能方面表现出更好的性能,因为它们在DSDPBEP86和PBE0DH中的平均绝对偏差(MAD)和均方根偏差(RMSD)值分别降低(MAD = 1.0305,RMSD = 1.6277)和(MAD = 0.9965,RMSD = 1.6101)。