Suppr超能文献

探索单金属(铜、镍、锌)修饰的氮化铝纳米结构作为氟他胺抗癌药物传感器的潜力。

Exploring the potential of single-metals (Cu, Ni, Zn) decorated AlN nanostructures as sensors for flutamide anticancer drug.

作者信息

Ejiofor Emmanuel U, Ishebe Joyce E, Benjamin Innocent, Okon Gideon A, Gber Terkumbur E, Louis Hitler

机构信息

Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.

Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria.

出版信息

Heliyon. 2023 Oct 11;9(10):e20682. doi: 10.1016/j.heliyon.2023.e20682. eCollection 2023 Oct.

Abstract

In recent years, scientists have been actively exploring and expanding biosensor technologies and materials to meet the growing societal demands in healthcare and other fields. This study aims to revolutionize biosensors by using density functional theory (DFT) at the cutting-edge B3LYP-GD3BJ/def2tzsvp level to investigate the sensing capabilities of (Cu, Ni, and Zn) doped on Aluminum nitride (AlN) nanostructures. Specifically, we focus on their potential to detect, analyze, and sense the drug flutamide (FLU) efficiently. Through advanced computational techniques, we explore molecular interactions to pave the way for highly effective and versatile biosensors. The adsorption energy values of -38.76 kcal/mol, -39.39 kcal/mol, and -39.37 kcal/mol for FLU@Cu-AlN, FLU@Ni-AlN, and FLU@Zn-AlN, respectively, indicate that FLU chemically adsorbs on the studied nanostructures. The reactivity and conductivity of the system follow a decreasing pattern: FLU@Cu-AlN > FLU@Ni-AlN > FLU@Zn-AlN, with a band gap of 0.267 eV, 2.197 eV, and 2.932 eV, respectively. These results suggest that FLU preferably adsorbs on the AlN@Cu surface. Natural bond orbital analysis reveals significant transitions in the studied system. Quantum theory of atom in molecule (QTAIM) and Non-covalent interaction (NCI) analysis confirm the nature and strength of interactions. Overall, our findings indicate that the doped surfaces show promise as electronic and biosensor materials for detection of FLU in real-world applications. We encourage experimental researchers to explore the use of (Cu, Ni, and Zn) doped on Aluminum nitride (AlN), particularly AlN@Cu, for biosensor applications.

摘要

近年来,科学家们一直在积极探索和扩展生物传感器技术及材料,以满足医疗保健和其他领域不断增长的社会需求。本研究旨在通过在前沿的B3LYP-GD3BJ/def2tzsvp水平上使用密度泛函理论(DFT)来研究掺杂在氮化铝(AlN)纳米结构上的(铜、镍和锌)的传感能力,从而彻底改变生物传感器。具体而言,我们关注它们有效检测、分析和传感药物氟他胺(FLU)的潜力。通过先进的计算技术,我们探索分子相互作用,为高效且通用的生物传感器铺平道路。FLU@Cu-AlN、FLU@Ni-AlN和FLU@Zn-AlN的吸附能值分别为-38.76 kcal/mol、-39.39 kcal/mol和-39.37 kcal/mol,这表明FLU化学吸附在所研究的纳米结构上。该系统的反应性和电导率呈递减模式:FLU@Cu-AlN > FLU@Ni-AlN > FLU@Zn-AlN,其带隙分别为0.267 eV、2.197 eV和2.932 eV。这些结果表明FLU优先吸附在AlN@Cu表面。自然键轨道分析揭示了所研究系统中的显著跃迁。分子中的原子量子理论(QTAIM)和非共价相互作用(NCI)分析证实了相互作用的性质和强度。总体而言,我们的研究结果表明,掺杂表面有望作为电子和生物传感器材料用于实际应用中FLU的检测。我们鼓励实验研究人员探索将掺杂在氮化铝(AlN)上的(铜、镍和锌),特别是AlN@Cu,用于生物传感器应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/611c/10589786/2204531d592a/gr1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验