Suppr超能文献

用二维CaO纳米结构材料检测碳、硫和二氧化氮污染物

Detection of Carbon, Sulfur, and Nitrogen Dioxide Pollutants with a 2D CaO Nanostructured Material.

作者信息

Louis Hitler, Egemonye ThankGod C, Unimuke Tomsmith O, Inah Bassey E, Edet Henry O, Eno Ededet A, Adalikwu Stephen A, Adeyinka Adedapo S

机构信息

Computational and Bio-Simulation Research Group, University of Calabar, P.M.B 1115, Calabar 540221, Nigeria.

Department of Pure and Applied Chemistry, University of Calabar, P.M.B 1115, Calabar 540221, Nigeria.

出版信息

ACS Omega. 2022 Sep 19;7(39):34929-34943. doi: 10.1021/acsomega.2c03512. eCollection 2022 Oct 4.

Abstract

In recent times, nanomaterials have been applied for the detection and sensing of toxic gases in the environment owing to their large surface-to-volume ratio and efficiency. CO is a toxic gas that is associated with causing global warming, while SO and NO are also characterized as nonbenign gases in the sense that when inhaled, they increase the rate of respiratory infections. Therefore, there is an explicit reason to develop efficient nanosensors for monitoring and sensing of these gases in the environment. Herein, we performed quantum chemical simulation on a CaO nanocage as an efficient nanosensor for sensing and monitoring of these gases (CO, SO, NO) by employing high-level density functional theory modeling at the B3LYP-GD3(BJ)/6-311+G(d,p) level of theory. The results obtained from our studies revealed that the adsorption of CO and SO on the CaO nanocage with adsorption energies of -2.01 and -5.85 eV, respectively, is chemisorption in nature, while that of NO possessing an adsorption energy of -0.69 eV is related to physisorption. Moreover, frontier molecular orbital (FMO), global reactivity descriptors, and noncovalent interaction (NCI) analysis revealed that the adsorption of CO and SO on the CaO nanocage is stable adsorption, while that of NO is unstable adsorption. Thus, we can infer that the CaO nanocage is more efficient as a nanosensor in sensing CO and SO gases than in sensing NO gas.

摘要

近年来,由于纳米材料具有较大的表面体积比和高效性,已被应用于环境中有毒气体的检测与传感。一氧化碳是一种与全球变暖相关的有毒气体,而二氧化硫和一氧化氮在吸入时会增加呼吸道感染的发生率,也被视为有害气体。因此,开发高效的纳米传感器来监测环境中的这些气体具有明确的理由。在此,我们通过在B3LYP-GD3(BJ)/6-311+G(d,p)理论水平上采用高水平密度泛函理论建模,对氧化钙纳米笼作为一种用于传感和监测这些气体(一氧化碳、二氧化硫、一氧化氮)的高效纳米传感器进行了量子化学模拟。我们的研究结果表明,一氧化碳和二氧化硫在氧化钙纳米笼上的吸附,吸附能分别为-2.01和-5.85电子伏特,本质上是化学吸附,而一氧化氮的吸附能为-0.69电子伏特,属于物理吸附。此外,前线分子轨道(FMO)、全局反应性描述符和非共价相互作用(NCI)分析表明,一氧化碳和二氧化硫在氧化钙纳米笼上的吸附是稳定吸附,而一氧化氮的吸附是不稳定吸附。因此,我们可以推断,氧化钙纳米笼作为纳米传感器在传感一氧化碳和二氧化硫气体方面比传感一氧化氮气体更高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b327/9535646/9e979230d191/ao2c03512_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验