Louis Hitler, Etiese Daniel, Unimuke Tomsmith O, Owen Aniekan E, Rajee Abdulahi O, Gber Terkumbur E, Chima Chioma M, Eno Ededet A, Nfor Emmanuel N
Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria.
RSC Adv. 2022 Oct 24;12(47):30365-30380. doi: 10.1039/d2ra05456f.
The application of nickel complexes of nicotinic acid hydrazide ligand as a potential gas-sensor and adsorbent material for HS gas was examined using appropriate density functional theory (DFT) calculations with the ωB97XD/Gen/6-311++G(d,p)/LanL2DZ method. The FT-IR spectrum of the synthesized ligand exhibited a medium band at 3178 cm attributed to (NH) stretching vibrations and strong bands at 1657 and 1600 cm corresponding to the presence of (C[double bond, length as m-dash]O) and (C[double bond, length as m-dash]N) vibration modes. In the spectrum of the nickel(ii) complex, the (C[double bond, length as m-dash]O) and (C[double bond, length as m-dash]N) vibration bands experience negative shifts to 1605 cm and 1580 cm, respectively, compared to the ligand. This indicates the coordination of the carbonyl oxygen and the azomethine nitrogen atoms to the Ni ion. Thus, the sensing mechanism of the complexes indicated a short recovery time and that the work function value increases for all complexes, necessitating an excellent HS gas sensor material. Thus, a profound assertion was given that the complex sensor surfaces exhibited very dense stability with regards to their relevant binding energies corresponding to various existing studies.
使用适当的密度泛函理论(DFT)计算方法ωB97XD/Gen/6-311++G(d,p)/LanL2DZ,研究了烟酰肼配体的镍配合物作为HS气体潜在气体传感器和吸附材料的应用。合成配体的傅里叶变换红外光谱(FT-IR)在3178 cm处显示出一个中等强度的吸收带,归因于(NH)伸缩振动,在1657和1600 cm处有强吸收带,分别对应于(C[双键,长度为m破折号]O)和(C[双键,长度为m破折号]N)振动模式的存在。在镍(ii)配合物的光谱中,与配体相比,(C[双键,长度为m破折号]O)和(C[双键,长度为m破折号]N)振动带分别负移至1605 cm和1580 cm。这表明羰基氧和偶氮甲碱氮原子与镍离子发生了配位。因此,配合物的传感机制表明恢复时间短,并且所有配合物的功函数值都增加,这使其成为优异的HS气体传感器材料。因此,有一个深刻的论断是,与各种现有研究相对应,复合传感器表面在其相关结合能方面表现出非常高的稳定性。