Suppr超能文献

用于T1加权脑磁共振图像分割的域适应基准

A domain adaptation benchmark for T1-weighted brain magnetic resonance image segmentation.

作者信息

Saat Parisa, Nogovitsyn Nikita, Hassan Muhammad Yusuf, Ganaie Muhammad Athar, Souza Roberto, Hemmati Hadi

机构信息

Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.

Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, ON, Canada.

出版信息

Front Neuroinform. 2022 Sep 23;16:919779. doi: 10.3389/fninf.2022.919779. eCollection 2022.

Abstract

Accurate brain segmentation is critical for magnetic resonance imaging (MRI) analysis pipelines. Machine-learning-based brain MR image segmentation methods are among the state-of-the-art techniques for this task. Nevertheless, the segmentations produced by machine learning models often degrade in the presence of expected domain shifts between the test and train sets data distributions. These domain shifts are expected due to several factors, such as scanner hardware and software differences, technology updates, and differences in MRI acquisition parameters. Domain adaptation (DA) methods can make machine learning models more resilient to these domain shifts. This paper proposes a benchmark for investigating DA techniques for brain MR image segmentation using data collected across sites with scanners from different vendors (Philips, Siemens, and General Electric). Our work provides labeled data, publicly available source code for a set of baseline and DA models, and a benchmark for assessing different brain MR image segmentation techniques. We applied the proposed benchmark to evaluate two segmentation tasks: skull-stripping; and white-matter, gray-matter, and cerebrospinal fluid segmentation, but the benchmark can be extended to other brain structures. Our main findings during the development of this benchmark are that there is not a single DA technique that consistently outperforms others, and hyperparameter tuning and computational times for these methods still pose a challenge before broader adoption of these methods in the clinical practice.

摘要

准确的脑部分割对于磁共振成像(MRI)分析流程至关重要。基于机器学习的脑磁共振图像分割方法是完成这项任务的最先进技术之一。然而,在测试集和训练集数据分布之间存在预期的域偏移时,机器学习模型生成的分割结果往往会退化。由于多种因素,如扫描仪硬件和软件差异、技术更新以及MRI采集参数的差异,这些域偏移是预期会出现的。域适应(DA)方法可以使机器学习模型对这些域偏移更具弹性。本文提出了一个基准,用于使用从不同供应商(飞利浦、西门子和通用电气)的扫描仪跨站点收集的数据来研究脑磁共振图像分割的DA技术。我们的工作提供了标记数据、一组基线模型和DA模型的公开可用源代码,以及一个用于评估不同脑磁共振图像分割技术的基准。我们应用所提出的基准来评估两项分割任务:去颅骨;以及白质、灰质和脑脊液分割,但该基准可以扩展到其他脑结构。我们在开发此基准过程中的主要发现是,没有一种DA技术能始终优于其他技术,并且在这些方法更广泛地应用于临床实践之前,这些方法的超参数调整和计算时间仍然是一个挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c7/9538795/f2dde398a710/fninf-16-919779-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验